Polyatomic ion

Last updated
An electrostatic potential map of the nitrate ion (
.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}
NO-3). Areas coloured translucent red, around the outside of the red oxygen atoms themselves, signify the regions of most negative electrostatic potential. Nitrate-ion-elpot.png
An electrostatic potential map of the nitrate ion ( N O 3). Areas coloured translucent red, around the outside of the red oxygen atoms themselves, signify the regions of most negative electrostatic potential.

A polyatomic ion (also known as a molecular ion) is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zero. [1] The term molecule may or may not be used to refer to a polyatomic ion, depending on the definition used. The prefix poly- carries the meaning "many" in Greek, but even ions of two atoms are commonly described as polyatomic. [2]

Contents

In older literature, a polyatomic ion may instead be referred to as a radical (or less commonly, as a radical group). In contemporary usage, the term radical refers to various free radicals, which are species that have an unpaired electron and need not be charged.[ citation needed ] [3]

A simple example of a polyatomic ion is the hydroxide ion, which consists of one oxygen atom and one hydrogen atom, jointly carrying a net charge of −1; its chemical formula is O H . In contrast, an ammonium ion consists of one nitrogen atom and four hydrogen atoms, with a charge of +1; its chemical formula is N H +4.

Polyatomic ions often are useful in the context of acid–base chemistry and in the formation of salts.

Often, a polyatomic ion can be considered as the conjugate acid or base of a neutral molecule. For example, the conjugate base of sulfuric acid (H2SO4) is the polyatomic hydrogen sulfate anion (HSO4). The removal of another hydrogen ion produces the sulfate anion (SO2−4).

Nomenclature of polyatomic anions

There are several patterns that can be used for learning the nomenclature of polyatomic anions. First, when the prefix bi is added to a name, a hydrogen is added to the ion's formula and its charge is increased by 1, the latter being a consequence of the hydrogen ion's +1 charge. An alternative to the bi- prefix is to use the word hydrogen in its place: the anion derived from H+. For example, let us consider carbonate( CO2−3 ) ion.

H+ + CO2−3 HCO3 .

It is either called as bicarbonate or hydrogen carbonate. This process is called protonation.

Most of the common polyatomic anions are oxyanions, conjugate bases of oxyacids (acids derived from the oxides of non-metallic elements). For example, the sulfate anion, S O 2−4, is derived from H2SO4 , which can be regarded as SO3 + H2O .

The second rule is based on the oxidation state of the central atom in the ion, which in practice is often (but not always) directly related to the number of oxygen atoms in the ion, following the pattern shown below. The following table shows the chlorine oxyanion family:

Oxidation state−1+1+3+5+7
Anion name chloride hypochlorite chlorite chlorate perchlorate
FormulaClClOClO2ClO3ClO4
Structure Chloride-ion-3D-vdW.png Hypochlorite-ion-3D-vdW.png Chlorite-ion-3D-vdW.png Chlorate-ion-3D-vdW.png Perchlorate-ion-3D-vdW.png

As the number of oxygen atoms bound to chlorine increases, the chlorine's oxidation number becomes more positive. This gives rise to the following common pattern: first, the -ate ion is considered to be the base name; adding a per- prefix adds an oxygen, while changing the -ate suffix to -ite will reduce the oxygens by one, and keeping the suffix -ite and adding the prefix hypo- reduces the number of oxygens by one more, all without changing the charge. The naming pattern follows within many different oxyanion series based on a standard root for that particular series. The -ite has one less oxygen than the -ate, but different -ate anions might have different numbers of oxygen atoms.

These rules do not work with all polyatomic anions, but they do apply to several of the more common ones. The following table shows how these prefixes are used for some of these common anion groups.

bromide hypobromite bromite bromate perbromate
Br
BrO
BrO
2
BrO
3
BrO
4
iodide hypoiodite iodite iodate periodate
I
IO
IO
2
IO
3
IO
4
or IO5−
6
sulfide hyposulfite sulfite sulfate persulfate
S2−
S
2
O2−
2
SO2−
3
SO2−
4
SO2−
5
selenide hyposelenite selenite selenate
Se2−
Se
2
O2−
2
SeO2−
3
SeO2−
4
telluride hypotellurite tellurite tellurate
Te2−
TeO2−
2
TeO2−
3
TeO2−
4
nitride hyponitrite nitrite nitrate pernitrate
N3−
N
2
O2−
2
NO
2
NO
3
NO
4
phosphide hypophosphite phosphite phosphate perphosphate
P3−
H
2
PO
2
PO3−
3
PO3−
4
PO3−
5
arsenide hypoarsenite arsenite arsenate
As3−
AsO3−
2
AsO3−
3
AsO3−
4

Some oxo-anions can dimerize with loss of an oxygen atom. The prefix pyro is used, as the reaction that forms these types of chemicals often involves heating to form these types of structures. [4] The prefix pyro is also denoted by the prefix di- . For example, dichromate ion is a dimer.

sulfite pyrosulfite
SO2−
3
S
2
O2−
5
sulfate pyrosulfate
SO2−
4
S
2
O2−
7
phosphite pyrophosphite
PO3−
3
P
2
O4−
5
phosphate pyrophosphate
PO3−
4
P
2
O4−
7
arsenate pyroarsenate
AsO3−
4
As
2
O4−
7
chromate dichromate
CrO2−
4
Cr
2
O2−
7
carbonate dicarbonate
CO2−
3
C
2
O2−
5
selenitepyroselenite
SeO2−
3
Se
2
O2−
5

Other examples of common polyatomic ions

The following tables give additional examples of commonly encountered polyatomic ions. Only a few representatives are given, as the number of polyatomic ions encountered in practice is very large.

Anions
Tetrahydroxyborate B(OH)4
Acetylide C2−2
Ethoxide or ethanolateC2H5O
Acetate or ethanoateCH3COO or C2H3O2
Benzoate C6H5COO or C7H5O2
Citrate C6H5O3−7
Formate HCOO
Carbonate CO2−3
Oxalate C2O2−4
Cyanide CN
Chromate CrO2−4
Dichromate Cr2O2−7
Bicarbonate or hydrogencarbonateHCO3
Hydrogen phosphate HPO2−4
Dihydrogen phosphate H2PO4
Hydrogen sulfate or bisulfateHSO4
Manganate MnO2−4
Permanganate MnO4
Zincate ZnO2−2
Aluminate AlO2
Tungstate WO2−4
Azanide or amideNH2
Peroxide O2−2
Superoxide O2
Hydroxide OH
Bisulfide SH
Cyanate OCN
Thiocyanate SCN
Orthosilicate SiO4−4
Thiosulfate S2O2−3
Azide N3
Tetraperoxochromate Cr(O2)3−4
Cations
Onium ions Carbenium ions Others
Guanidinium C(NH2)+3 Tropylium C7H+7 Mercury(I) Hg2+2
Ammonium NH+4 Triphenylcarbenium (C6H5)3C+ Dihydrogen H+2
Phosphonium PH+4 Cyclopropenium C3H+3
Hydronium H3O+ Trifluoromethyl CF+3
Fluoronium H2F+
Pyrylium C5H5O+
Sulfonium H3S+

See also

Related Research Articles

<span class="mw-page-title-main">Acid–base reaction</span> Chemical reaction between an acid and a base

In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to an organyl group, or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Chemical reaction</span> Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an energy change as new products are generated. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

In chemistry, peroxides are a group of compounds with the structure R−O−O−R, where the R's represent a radical and O's are single oxygen atoms. Oxygen atoms are joined to each other and to adjacent elements through single covalent bonds, denoted by dashes or lines. The O−O group in a peroxide is often called the peroxide group, though some nomenclature discrepancies exist. This linkage is recognized as a common polyatomic ion, and exists in many molecules.

<span class="mw-page-title-main">Salt (chemistry)</span> Chemical compound involving ionic bonding

In chemistry, a salt or ionic compound is a chemical compound consisting of an assembly of positively charged ions (cations) and negatively charged ions (anions), which results in a compound with no net electric charge. The constituent ions are held together by electrostatic forces termed ionic bonds.

In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to other atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. Beside nearly-pure ionic bonding, many covalent bonds exhibit a strong ionicity, making oxidation state a useful predictor of charge.

<span class="mw-page-title-main">Redox</span> Chemical reaction in which oxidation states of atoms are changed

Redox is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state. The oxidation and reduction processes occur simultaneously in the chemical reaction.

<span class="mw-page-title-main">Sulfate</span> Oxyanion with a central atom of sulfur surrounded by 4 oxygen atoms

The sulfate or sulphate ion is a polyatomic anion with the empirical formula SO2−4. Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many are prepared from that acid.

An oxyanion, or oxoanion, is an ion with the generic formula A
x
Oz
y
. Oxyanions are formed by a large majority of the chemical elements. The formulae of simple oxyanions are determined by the octet rule. The corresponding oxyacid of an oxyanion is the compound H
z
A
x
O
y
. The structures of condensed oxyanions can be rationalized in terms of AOn polyhedral units with sharing of corners or edges between polyhedra. The oxyanions adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) are important in biology.

In chemistry, the valence or valency of an atom is a measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Valence is generally understood to be the number of chemical bonds that each atom of a given chemical element typically forms. Double bonds are considered to be two bonds, triple bonds to be three, quadruple bonds to be four, quintuple bonds to be five and sextuple bonds to be six. In most compounds, the valence of hydrogen is 1, of oxygen is 2, of nitrogen is 3, and of carbon is 4. Valence is not to be confused with the related concepts of the coordination number, the oxidation state, or the number of valence electrons for a given atom.

In chemistry, disproportionation, sometimes called dismutation, is a redox reaction in which one compound of intermediate oxidation state converts to two compounds, one of higher and one of lower oxidation state. The reverse of disproportionation, such as when a compound in an intermediate oxidation state is formed from precursors of lower and higher oxidation states, is called comproportionation, also known as symproportionation.

<span class="mw-page-title-main">Tellurate</span> Compound containing an oxyanion of tellurium

In chemistry, tellurate is a compound containing an oxyanion of tellurium where tellurium has an oxidation number of +6. In the naming of inorganic compounds it is a suffix that indicates a polyatomic anion with a central tellurium atom.

Chemical nomenclature is a set of rules to generate systematic names for chemical compounds. The nomenclature used most frequently worldwide is the one created and developed by the International Union of Pure and Applied Chemistry (IUPAC).

In chemical nomenclature, the IUPAC nomenclature of inorganic chemistry is a systematic method of naming inorganic chemical compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in Nomenclature of Inorganic Chemistry. Ideally, every inorganic compound should have a name from which an unambiguous formula can be determined. There is also an IUPAC nomenclature of organic chemistry.

An oxyacid, oxoacid, or ternary acid is an acid that contains oxygen. Specifically, it is a compound that contains hydrogen, oxygen, and at least one other element, with at least one hydrogen atom bonded to oxygen that can dissociate to produce the H+ cation and the anion of the acid.

<span class="mw-page-title-main">Thiosulfate</span> Polyatomic ion (S2O3, charge –2)

Thiosulfate is an oxyanion of sulfur with the chemical formula S2O2−3. Thiosulfate also refers to the compounds containing this anion, which are the salts of thiosulfuric acid, such as sodium thiosulfate Na2S2O3 and ammonium thiosulfate (NH4)2S2O3. Thiosulfate salts occur naturally. Thiosulfate rapidly dechlorinates water, and is used to halt bleaching in the paper-making industry. Thiosulfate salts are mainly used for dyeing in textiles, and bleaching of natural substances.

In chemistry, an ate complex is a salt formed by the reaction of a Lewis acid with a Lewis base whereby the central atom increases its valence and gains a negative formal charge..

Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005 is the 2005 version of Nomenclature of Inorganic Chemistry. It is a collection of rules for naming inorganic compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC).

<span class="mw-page-title-main">Ion</span> Particle, atom or molecule with a net electrical charge

An ion is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention. The net charge of an ion is not zero because its total number of electrons is unequal to its total number of protons.

<span class="mw-page-title-main">Sulfoxylic acid</span> Chemical compound

Sulfoxylic acid (H2SO2) (also known as hyposulfurous acid or sulfur dihydroxide) is an unstable oxoacid of sulfur in an intermediate oxidation state between hydrogen sulfide and dithionous acid. It consists of two hydroxy groups attached to a sulfur atom. Sulfoxylic acid contains sulfur in an oxidation state of +2. Sulfur monoxide (SO) can be considered as a theoretical anhydride for sulfoxylic acid, but it is not actually known to react with water.

References

  1. Petrucci, Ralph H.; Herring, F. Geoffrey; Madura, Jeffry D.; Bissonnette, Carey (2017). General chemistry: principles and modern applications (Eleventh ed.). Toronto: Pearson. p. A50. ISBN   978-0-13-293128-1.
  2. "Ionic Compounds Containing Polyatomic Ions". www.chem.purdue.edu. Retrieved 2022-04-16.
  3. "IUPAC - radical (free radical) (R05066)". goldbook.iupac.org. Retrieved 25 January 2023.
  4. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " pyro ". doi : 10.1351/goldbook.P04959