Names | |
---|---|
IUPAC name (Trimethylammonio)acetate | |
Other names
| |
Identifiers | |
3D model (JSmol) | |
3537113 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
DrugBank | |
ECHA InfoCard | 100.003.174 |
EC Number |
|
26434 | |
KEGG | |
MeSH | Betaine |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C5H11NO2 | |
Molar mass | 117.146 |
Appearance | White solid |
Melting point | 180 °C (356 °F; 453 K) (decomposes) |
Soluble | |
Solubility | Methanol |
Acidity (pKa) | 1.84 |
Pharmacology | |
A16AA06 ( WHO ) | |
License data | |
By mouth | |
Legal status | |
Hazards | |
GHS labelling: | |
Warning | |
H315, H319 | |
P264, P280, P302+P352, P305+P351+P338, P321, P332+P313, P337+P313, P362 | |
Related compounds | |
Related amino acids | Glycine Methylglycine Dimethylglycine |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Trimethylglycine is an amino acid derivative with the formula (CH3)3N+CH2CO−2. A colorless, water-soluble solid, it occurs in plants. [5] Trimethylglycine is a zwitterion: the molecule contains both a quaternary ammonium group and a carboxylate group. Trimethylglycine was the first betaine discovered; originally it was simply called betaine because it was discovered in sugar beets (Beta vulgaris subsp. vulgaris). [6] Several other betaines are now known.
Betaine, sold under the brand name Cystadane is indicated for the adjunctive treatment of homocystinuria, involving deficiencies or defects in cystathionine beta-synthase (CBS), 5,10-methylene-tetrahydrofolate reductase (MTHFR), or cobalamin cofactor metabolism (cbl). [2] [3] [4] [7]
The most common side effect is elevated levels of methionine in the blood. [3]
The EU has authorized the health claim that betaine "contributes to normal homocysteine metabolism.". [8]
In most organisms, glycine betaine is biosynthesized by oxidation of choline. The intermediate, betaine aldehyde, is generated by the action of the enzyme mitochondrial choline oxidase (choline dehydrogenase, EC 1.1.99.1). In mice, betaine aldehyde is further oxidised in the mitochondria by the enzyme betaine-aldehyde dehydrogenase (EC 1.2.1.8). [9] [10] In humans betaine aldehyde activity is performed by a nonspecific cystosolic aldehyde dehydrogenase enzyme (EC 1.2.1.3) [11]
Trimethylglycine is produced by some cyanobacteria, as established by 13C nuclear magnetic resonance. It is proposed to protect for some enzymes, against inhibition by NaCl and KCl. [12]
Trimethylglycine is an osmolyte, a water-soluble salt-like substance. Sugar beet was cultivated from sea beet, which requires osmolytes in order to survive the salty soils of coastal areas. Trimethylglycine also occurs in high concentrations (~10 mM) in many marine invertebrates, such as crustaceans and molluscs. It serves as a appetitive attractant to generalist carnivores such as the predatory sea slug Pleurobranchaea californica . [13]
Trimethylglycine is a cofactor in methylation, a process that occurs in all mammals. These processes include the synthesis of neurotransmitters such as dopamine and serotonin. Methylation is also required for the biosynthesis of melatonin and the electron transport chain constituent coenzyme Q10, as well as the methylation of DNA for epigenetics. One step in the methylation cycle is the remethylation of homocysteine, a compound which is naturally generated during demethylation of the essential amino acid methionine. Despite its natural formation, homocysteine has been linked to inflammation, depression, specific forms of dementia, and various types of vascular disease. The remethylation process that detoxifies homocysteine and converts it back to methionine can occur via either of two pathways. The pathway present in virtually all cells involves the enzyme methionine synthase (MS), which requires vitamin B12 as a cofactor, and also depends indirectly on folate and other B vitamins. The second pathway (restricted to liver and kidney in most mammals) involves betaine-homocysteine methyltransferase (BHMT) and requires trimethylglycine as a cofactor. During normal physiological conditions, the two pathways contribute equally to removal of homocysteine in the body. [14] Further degradation of betaine, via the enzyme dimethylglycine dehydrogenase produces folate, thus contributing back to methionine synthase. Betaine is thus involved in the synthesis of many biologically important molecules, and may be even more important in situations where the major pathway for the regeneration of methionine from homocysteine has been compromised by genetic polymorphisms such as mutations in the MS gene.
Trimethylglycine is used as a supplement for both animals and plants. [5] Processing sucrose from sugar beets yields glycine betaine as a byproduct. The economic significance of trimethylglycine is comparable to that of sugar in sugar beets. [15]
Salmon farms apply trimethylglycine to relieve the osmotic pressure on the fishes' cells when workers transfer the fish from freshwater to saltwater. [15] [16]
Trimethylglycine supplementation decreases the amount of adipose tissue in pigs; however, research in human subjects has shown no effect on body weight, body composition, or resting energy expenditure. [17]
Nutritionally, betaine is not needed when sufficient dietary choline is present for synthesis. [18] When insufficient betaine is available, elevated homocysteine levels and decreased SAM levels in blood occur. Supplementation of betaine in this situation would resolve these blood marker issues, but not compensate for other functions of choline. [19]
Food | Betaine (mg/100 g) |
---|---|
Wheat germ, toasted [21] | 1240 |
Quinoa | 630 |
Wheat germ | 410 |
Lamb's quarters | 330 |
Wheat bran | 320 |
Canned Beetroot | 260 |
Dark Rye flour | 150 |
Spinach | 110-130 |
Although trimethylglycine supplementation decreases the amount of adipose tissue in pigs, research on human subjects has shown no effect on body weight, body composition, or resting energy expenditure when used in conjunction with a low calorie diet. [17] The US Food and Drug Administration (FDA) approved betaine trimethylglycine (also known by the brand name Cystadane) for the treatment of homocystinuria, a disease caused by abnormally high homocysteine levels at birth. [22] Trimethylglycine is also used as the hydrochloride salt (marketed as betaine hydrochloride or betaine HCl). Betaine hydrochloride was sold over-the-counter (OTC) as a purported gastric aid in the United States. US Code of Federal Regulations, Title 21, Section 310.540, which became effective in November 1993, banned the marketing of betaine hydrochloride as a digestive aid due to insufficient evidence to classify it as "generally recognized as safe and effective" for that specified use. [23]
Trimethylglycine supplementation may cause diarrhea, bloating, cramps, dyspepsia, nausea or vomiting. [24] Although rare, it can also causes excessive increases in serum methionine concentrations in the brain, which may lead to cerebral edema, a life-threatening condition. [24]
Trimethylglycine supplementation lowers homocysteine but also raises LDL-cholesterol in obese individuals and renal patients. [25]
Vitamin B6 is one of the B vitamins, and is an essential nutrient for humans. The term essential nutrient refers to a group of six chemically similar compounds, i.e., "vitamers", which can be interconverted in biological systems. Its active form, pyridoxal 5′-phosphate, serves as a coenzyme in more than 140 enzyme reactions in amino acid, glucose, and lipid metabolism.
Methionine is an essential amino acid in humans.
Choline is a cation with the chemical formula [(CH3)3NCH2CH2OH]+. Choline forms various salts, such as choline chloride and choline bitartrate. An essential nutrient for animals, it is a structural component of phospholipids and cell membranes.
Sarcosine, also known as N-methylglycine, or monomethylglycine, is a amino acid with the formula CH3N(H)CH2CO2H. It exists at neutral pH as the zwitterion CH3N+(H)2CH2CO2−, which can be obtained as a white, water-soluble powder. Like some amino acids, sarcosine converts to a cation at low pH and an anion at high pH, with the respective formulas CH3N+(H)2CH2CO2H and CH3N(H)CH2CO2−. Sarcosine is a close relative of glycine, with a secondary amine in place of the primary amine.
Lipotropic compounds are those that help catalyse the breakdown of fat during metabolism in the body. A lipotropic nutrient promotes or encourages the export of fat from the liver. Lipotropics are necessary for maintenance of a healthy liver, and for burning the exported fat for additional energy. Without lipotropics, such as choline and inositol, fats and bile can become trapped in the liver, causing severe problems such as cirrhosis and blocking fat metabolism.
Homocystinuria (HCU) is an inherited disorder of the metabolism of the amino acid methionine due to a deficiency of cystathionine beta synthase or methionine synthase. It is an inherited autosomal recessive trait, which means a child needs to inherit a copy of the defective gene from both parents to be affected. Symptoms of homocystinuria can also be caused by a deficiency of vitamins B6, B12, or folate.
A betaine in chemistry is any neutral chemical compound with a positively charged cationic functional group that bears no hydrogen atom, such as a quaternary ammonium or phosphonium cation, and with a negatively charged functional group, such as a carboxylate group that may not be adjacent to the cationic site. Historically, the term was reserved for trimethylglycine (TMG), which is involved in methylation reactions and detoxification of homocysteine. This is a modified amino acid consisting of glycine with three methyl groups serving as methyl donor for various metabolic pathways.
Methionine synthase (MS, MeSe, MTR) is primarily responsible for the regeneration of methionine from homocysteine in most individuals. In humans it is encoded by the MTR gene (5-methyltetrahydrofolate-homocysteine methyltransferase). Methionine synthase forms part of the S-adenosylmethionine (SAMe) biosynthesis and regeneration cycle, and is the enzyme responsible for linking the cycle to one-carbon metabolism via the folate cycle. There are two primary forms of this enzyme, the Vitamin B12 (cobalamin)-dependent (MetH) and independent (MetE) forms, although minimal core methionine synthases that do not fit cleanly into either category have also been described in some anaerobic bacteria. The two dominant forms of the enzymes appear to be evolutionary independent and rely on considerably different chemical mechanisms. Mammals and other higher eukaryotes express only the cobalamin-dependent form. In contrast, the distribution of the two forms in Archaeplastida (plants and algae) is more complex. Plants exclusively possess the cobalamin-independent form, while algae have either one of the two, depending on species. Many different microorganisms express both the cobalamin-dependent and cobalamin-independent forms.
Hyperhomocysteinemia is a medical condition characterized by an abnormally high level of total homocysteine in the blood, conventionally described as above 15 μmol/L.
In the field of enzymology, a betaine-homocysteine S-methyltransferase also known as betaine-homocysteine methyltransferase (BHMT) is a zinc metallo-enzyme that catalyzes the transfer of a methyl group from trimethylglycine and a hydrogen ion from homocysteine to produce dimethylglycine and methionine respectively:
Phosphatidylethanolamine N-methyltransferase is a transferase enzyme which converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. In humans it is encoded by the PEMT gene within the Smith–Magenis syndrome region on chromosome 17.
In enzymology, a choline monooxygenase (EC 1.14.15.7) is an enzyme that catalyzes the chemical reaction
In enzymology, a choline dehydrogenase is an enzyme that catalyzes the chemical reaction
In enzymology, a choline oxidase (EC 1.1.3.17) is an enzyme that catalyzes the chemical reaction
Methionine synthase reductase, also known as MSR, is an enzyme that in humans is encoded by the MTRR gene.
Glycocyamine is a metabolite of glycine in which the amino group has been converted into a guanidine by guanylation. In vertebrate organism it is then transformed into creatine by methylation.
Glycine betaine aldehyde, often simply called betaine aldehyde, is an intermediate in the metabolism of glycine, serine and threonine. The human aldehyde dehydrogenase stimulates the transformation of betaine aldehyde to glycine betaine. Betaine aldehyde is a substrate for choline dehydrogenase (mitochondrial).
Sarcosine/dimethylglycine N-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:sarcosine(or N,N-dimethylglycine) N-methyltransferase . This enzyme catalyses the following chemical reaction
Glycine/sarcosine/dimethylglycine N-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:glycine(or sarcosine or N,N-dimethylglycine) N-methyltransferase . This enzyme catalyses the following chemical reaction
Remethylation involves methylation that occurs in some biochemical cycles. Often methyl groups are not mobile when attached to nitrogen and sulfur, but the removal and reinstallation of methyl groups does occur with the assistance of certain enzymes.
The European Food Safety Authority (EFSA) agreed that there is sufficient substantiation of the health claim for betaine concerning its contribution to normal homocysteine metabolism (EFSA, 2011a).