dimethylglycine dehydrogenase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 1.5.8.4 | ||||||||
CAS no. | 37256-30-7 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / QuickGO | ||||||||
|
In enzymology, a dimethylglycine dehydrogenase (EC 1.5.8.4) is an enzyme that catalyzes the chemical reaction
The 3 substrates of this enzyme are N,N-dimethylglycine, acceptor, and H2O, whereas its 3 products are sarcosine, formaldehyde, and reduced acceptor.
This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-NH group of donors with other acceptors. The systematic name of this enzyme class is N,N-dimethylglycine:acceptor oxidoreductase (demethylating). Other names in common use include N,N-dimethylglycine oxidase, and N,N-dimethylglycine:(acceptor) oxidoreductase (demethylating). This enzyme participates in glycine, serine and threonine metabolism. It employs one cofactor, FAD.
In enzymology, sarcosine dehydrogenase (EC 1.5.8.3) is a mitochondrial enzyme that catalyzes the chemical reaction N-demethylation of sarcosine to give glycine. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-NH group of donor with other acceptors. The systematic name of this enzyme class is sarcosine:acceptor oxidoreductase (demethylating). Other names in common use include sarcosine N-demethylase, monomethylglycine dehydrogenase, and sarcosine:(acceptor) oxidoreductase (demethylating). Sarcosine dehydrogenase is closely related to dimethylglycine dehydrogenase, which catalyzes the demethylation reaction of dimethylglycine to sarcosine. Both sarcosine dehydrogenase and dimethylglycine dehydrogenase use FAD as a cofactor. Sarcosine dehydrogenase is linked by electron-transferring flavoprotein (ETF) to the respiratory redox chain. The general chemical reaction catalyzed by sarcosine dehydrogenase is:
In enzymology, a spermidine dehydrogenase (EC 1.5.99.6) is an enzyme that catalyzes the chemical reaction
In enzymology, a glycerol-3-phosphate dehydrogenase [NAD(P)+] (EC 1.1.1.94) is an enzyme that catalyzes the chemical reaction
In enzymology, a 3alpha-hydroxysteroid dehydrogenase (B-specific) (EC 1.1.1.50) is an enzyme that catalyzes the chemical reaction
In enzymology, a D-2-hydroxy-acid dehydrogenase is an enzyme that catalyzes the chemical reaction
In enzymology, an aldehyde dehydrogenase [NAD(P)+] (EC 1.2.1.5) is an enzyme that catalyzes the chemical reaction
In enzymology, a betaine-aldehyde dehydrogenase (EC 1.2.1.8) is an enzyme that catalyzes the chemical reaction
In enzymology, a lactaldehyde dehydrogenase (EC 1.2.1.22) is an enzyme that catalyzes the chemical reaction
In enzymology, a L-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31) is an enzyme that catalyzes the chemical reaction
In enzymology, a methylmalonate-semialdehyde dehydrogenase (acylating) (EC 1.2.1.27) is an enzyme that catalyzes the chemical reaction
In enzymology, a pyruvate dehydrogenase (cytochrome) (EC 1.2.2.2) is an enzyme that catalyzes the chemical reaction
In enzymology, a 4-cresol dehydrogenase (hydroxylating) (EC 1.17.99.1) is an enzyme that catalyzes the chemical reaction
In enzymology, a 1-pyrroline-5-carboxylate dehydrogenase (EC 1.2.1.88) is an enzyme that catalyzes the chemical reaction
In enzymology, a dimethylglycine oxidase (EC 1.5.3.10) is an enzyme that catalyzes the chemical reaction
In enzymology, a methylglutamate dehydrogenase (EC 1.5.99.5) is an enzyme that catalyzes the chemical reaction
In enzymology, a nicotine dehydrogenase (EC 1.5.99.4) is an enzyme that catalyzes the chemical reaction
In enzymology, a N-methyl-L-amino-acid oxidase (EC 1.5.3.2) is an enzyme that catalyzes the chemical reaction
In enzymology, a phenylalanine dehydrogenase (EC 1.4.1.20) is an enzyme that catalyzes the chemical reaction
In enzymology, a saccharopine dehydrogenase (NAD+, L-lysine-forming) (EC 1.5.1.7) is an enzyme that catalyzes the chemical reaction
In enzymology, a trimethylamine dehydrogenase (EC 1.5.8.2) is an enzyme that catalyzes the chemical reaction