Chromium hexacarbonyl

Last updated
Chromium hexacarbonyl
Cr(CO)6.png
Chromium hexacarbonyl.png
Names
IUPAC name
Hexacarbonylchromium
Other names
Chromium carbonyl
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.032.579 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
RTECS number
  • GB5075000
UNII
  • InChI=1S/6CO.Cr/c6*1-2; Yes check.svgY
    Key: KOTQLLUQLXWWDK-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/6CO.Cr/c6*1-2;
    Key: KOTQLLUQLXWWDK-UHFFFAOYAN
  • O=C=[Cr](=C=O)(=C=O)(=C=O)(=C=O)=C=O
Properties
Cr(CO)6
Molar mass 220.057 g/mol
Appearancecolorless crystals
Density 1.77 g/cm3, solid
Melting point 90 °C (194 °F; 363 K)
Boiling point 210 °C (410 °F; 483 K) (decomposes)
insoluble
Solubility soluble in organic solvents
Structure
orthrhombic
octahedral
0 D
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
1
0
Flash point 210 °C (410 °F; 483 K)
Lethal dose or concentration (LD, LC):
150 mg/kg (oral, mouse)
230 mg/kg (oral, rat)
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 1 mg/m3 [1]
REL (Recommended)
TWA 0.5 mg/m3 [1]
IDLH (Immediate danger)
250 mg/m3 [1]
Safety data sheet (SDS) Oxford MSDS
Related compounds
Related compounds
[2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Chromium hexacarbonyl (IUPAC name: hexacarbonylchromium) is a chromium(0) organometallic compound with the formula Cr(CO)6. It is a homoleptic complex, which means that all the ligands are identical. It is a colorless crystalline air-stable solid, with a high vapor pressure.

Contents

Preparation

Like many metal carbonyls, Cr(CO)6 is generally prepared by "reductive carbonylation", which involves reduction of a metal halide with under an atmosphere of carbon monoxide. As described in a 2023 survey of methods "most cost-effective routes for the synthesis of group 6 hexacarbonyls are based on the reduction of the metal chlorides (CrCl3, MoCl5 or WCl6) with magnesium, zinc or aluminium powders... under CO pressures". [3]

Early work on methods included controbutions from luminaries such as Walter Hieber, his student Ernst Otto Fischer, and Giulio Natta. Using specially produced chromium metal will react with CO gas to give Cr(CO)6 directly, although the method is not used commercially.

Electronic structure and bonding

In chromium hexacarbonyl, the oxidation state for chromium is assigned as zero, because Cr-C bonding electrons come from the C atom and are still assigned to C in the hypothetical ionic bond which determines the oxidation states. The formula conforms to the 18-electron rule and the complex adopts octahedral geometry with six carbonyl ligands.

The bonding between d6 chromium metal and neutral carbonyl ligands is described by the Dewar-Chatt-Duncanson model.It involves donation of electrons in HOMO of CO to empty d orbitals of the Cr metals while back-bonding from other d orbitals to the pi* orbital of the ligands reinforces the interactions synergistically.

Orbital interactions in a chromium-CO complex. On the left, a filled sigma-orbital on CO overlaps with an empty d-orbital on the metal. On the right, an empty pi-antibonding orbital on CO overlaps with a filled d-orbital on the metal. DewarChattDuncansen Cr(CO)6.png
Orbital interactions in a chromium-CO complex. On the left, a filled sigma-orbital on CO overlaps with an empty d-orbital on the metal. On the right, an empty pi-antibonding orbital on CO overlaps with a filled d-orbital on the metal.

The crystallographic studies on this compound have discovered the Cr–C and C–O distances of 1.916 and 1.171 Å, respectively. [4] [5] [6] On one hand, there has been continuous efforts to calculate the electronic structures (including HOMO and LUMO) as well as its molecular geometry on the chromium hexacarbonyl compound with various approaches. [7] [8] [9] According to one of the most recent studies, [10] the ground state configuration of Cr(CO)6 turns out (2t2g)6(9 t1u)0(2t2u)0.

Reactions and applications

Photochemical reactions

Pentacarbonyl derivatives

When heated or UV-irradiated in tetrahydrofuran (THF) solution, Cr(CO)6 converts to Cr(CO)5(THF) with loss of one CO ligand. The THF ligand is readily displaced. Often the THF complex is generated and used in situ. [11] [12]

UV-irradiation of frozen solutions of chromium hexacarbonyl affords a variety of labile adducts, including labile but complexes with some noble gases. [13]

Photodimerization of norbornadiene

Norbornadiene was dimerized photochemically in the presence of Cr(CO)6, similarly to other metal complexes like Fe(CO)5, Ni(CO)4, and Co(CO)3(NO). [14]

Arene derivatives

Heating a solution of Cr(CO)6 in an aromatic solvent results in replacement of three CO ligands. The reactions are especially favorable for electron-rich arenes:

Cr(CO)6 + C6H5R → Cr(CO)3(C6H5R) + 3 CO

The products are "piano stool complexes". These species are typically yellow solids. One example is (benzene)chromium tricarbonyl.

Fischer carbenes

Alkyl and aryl organolithium reagents (RLi) add to Cr(CO)6 to give anionic acyl complexes. [15] These anionic species in turn react with alkylating agents such as trimethyloxonium tetrafluoroborate [(CH3)3O]+[BF4] to form (R−)(CH3O−)C=Cr(CO)5, where R stands for alkyl, to give Fischer carbene complexes: [16]

FischerSyn1.svg
FischerSyn2.svg

Cyclopentadienyl derivatives

Treatment of chromium hexacarbonyl with sodium cyclopentadienide gives Na+[Cr(CO)3(C5H5)]. Oxidation of this salt affords cyclopentadienylchromium tricarbonyl dimer ((C5H5)2Cr2(CO)6). This complex is distinctive because it exists in measurable equilibrium with the monometallic Cr(I) radical •Cr(CO)3(C5H5).

Ligand-transfer reactions

A unique double ligand-transfer reaction was reported with using chromium trichloride and chromium hexacarbonyl. [17] In reactions, potassium perrhenate (KReO4) is reduced and carbonylated by the chromium reagents and undergoes [C5H5] ligand-transfer to afford •Rh(CO)3(C5H5) complex derivatives.

Double ligand exchange.png

Safety

In common with many of the other homoleptic metal carbonyls (e.g. nickel carbonyl and iron carbonyl), chromium hexacarbonyl is toxic and thought to be carcinogenic. Its vapor pressure is relatively high for a metal complex, 1 mmHg (130 Pa) at 36 °C. [18]

Historic literature

Related Research Articles

<span class="mw-page-title-main">Metallocene</span>

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride or vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

A transition metal carbene complex is an organometallic compound featuring a divalent carbon ligand, itself also called a carbene. Carbene complexes have been synthesized from most transition metals and f-block metals, using many different synthetic routes such as nucleophilic addition and alpha-hydrogen abstraction. The term carbene ligand is a formalism since many are not directly derived from carbenes and most are much less reactive than lone carbenes. Described often as =CR2, carbene ligands are intermediate between alkyls (−CR3) and carbynes (≡CR). Many different carbene-based reagents such as Tebbe's reagent are used in synthesis. They also feature in catalytic reactions, especially alkene metathesis, and are of value in both industrial heterogeneous and in homogeneous catalysis for laboratory- and industrial-scale preparation of fine chemicals.

<span class="mw-page-title-main">Pauson–Khand reaction</span> Chemical reaction

The Pauson–Khand (PK) reaction is a chemical reaction, described as a [2+2+1] cycloaddition. In it, an alkyne, an alkene and carbon monoxide combine into a α,β-cyclopentenone in the presence of a metal-carbonyl catalyst.

<span class="mw-page-title-main">Molybdenum hexacarbonyl</span> Chemical compound

Molybdenum hexacarbonyl (also called molybdenum carbonyl) is the chemical compound with the formula Mo(CO)6. This colorless solid, like its chromium, tungsten, and seaborgium analogues, is noteworthy as a volatile, air-stable derivative of a metal in its zero oxidation state.

<span class="mw-page-title-main">Metal carbonyl</span> Coordination complexes of transition metals with carbon monoxide ligands

Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.

<span class="mw-page-title-main">Dimanganese decacarbonyl</span> Chemical compound

Dimanganese decacarbonyl, which has the chemical formula Mn2(CO)10, is a binary bimetallic carbonyl complex centered around the first row transition metal manganese. The first reported synthesis of Mn2(CO)10 was in 1954 at Linde Air Products Company and was performed by Brimm, Lynch, and Sesny. Their hypothesis about, and synthesis of, dimanganese decacarbonyl was fundamentally guided by the previously known dirhenium decacarbonyl (Re2(CO)10), the heavy atom analogue of Mn2(CO)10. Since its first synthesis, Mn2(CO)10 has been use sparingly as a reagent in the synthesis of other chemical species, but has found the most use as a simple system on which to study fundamental chemical and physical phenomena, most notably, the metal-metal bond. Dimanganese decacarbonyl is also used as a classic example to reinforce fundamental topics in organometallic chemistry like d-electron count, the 18-electron rule, oxidation state, valency, and the isolobal analogy.

<span class="mw-page-title-main">Bis(benzene)chromium</span> Chemical compound

Bis(benzene)chromium is the organometallic compound with the formula Cr(η6-C6H6)2. It is sometimes called dibenzenechromium. The compound played an important role in the development of sandwich compounds in organometallic chemistry and is the prototypical complex containing two arene ligands.

Organochromium chemistry is a branch of organometallic chemistry that deals with organic compounds containing a chromium to carbon bond and their reactions. The field is of some relevance to organic synthesis. The relevant oxidation states for organochromium complexes encompass the entire range of possible oxidation states from –4 (d10) in Na4[Cr–IV(CO)4] to +6 (d0) in oxo-alkyl complexes like Cp*CrVI(=O)2Me.

Organoiron chemistry is the chemistry of iron compounds containing a carbon-to-iron chemical bond. Organoiron compounds are relevant in organic synthesis as reagents such as iron pentacarbonyl, diiron nonacarbonyl and disodium tetracarbonylferrate. Although iron is generally less active in many catalytic applications, it is less expensive and "greener" than other metals. Organoiron compounds feature a wide range of ligands that support the Fe-C bond; as with other organometals, these supporting ligands prominently include phosphines, carbon monoxide, and cyclopentadienyl, but hard ligands such as amines are employed as well.

Organovanadium chemistry is the chemistry of organometallic compounds containing a carbon (C) to vanadium (V) chemical bond. Organovanadium compounds find only minor use as reagents in organic synthesis but are significant for polymer chemistry as catalysts.

Transition metal carbyne complexes are organometallic compounds with a triple bond between carbon and the transition metal. This triple bond consists of a σ-bond and two π-bonds. The HOMO of the carbyne ligand interacts with the LUMO of the metal to create the σ-bond. The two π-bonds are formed when the two HOMO orbitals of the metal back-donate to the LUMO of the carbyne. They are also called metal alkylidynes—the carbon is a carbyne ligand. Such compounds are useful in organic synthesis of alkynes and nitriles. They have been the focus on much fundamental research.

<span class="mw-page-title-main">Cyclopentadienyliron dicarbonyl dimer</span> Chemical compound

Cyclopentadienyliron dicarbonyl dimer is an organometallic compound with the formula [(η5-C5H5)Fe(CO)2]2, often abbreviated to Cp2Fe2(CO)4, [CpFe(CO)2]2 or even Fp2, with the colloquial name "fip dimer". It is a dark reddish-purple crystalline solid, which is readily soluble in moderately polar organic solvents such as chloroform and pyridine, but less soluble in carbon tetrachloride and carbon disulfide. Cp2Fe2(CO)4 is insoluble in but stable toward water. Cp2Fe2(CO)4 is reasonably stable to storage under air and serves as a convenient starting material for accessing other Fp (CpFe(CO)2) derivatives (described below).

<span class="mw-page-title-main">Half sandwich compound</span> Class of coordination compounds

Half sandwich compounds, also known as piano stool complexes, are organometallic complexes that feature a cyclic polyhapto ligand bound to an MLn center, where L is a unidentate ligand. Thousands of such complexes are known. Well-known examples include cyclobutadieneiron tricarbonyl and (C5H5)TiCl3. Commercially useful examples include (C5H5)Co(CO)2, which is used in the synthesis of substituted pyridines, and methylcyclopentadienyl manganese tricarbonyl, an antiknock agent in petrol.

<span class="mw-page-title-main">Phosphenium</span> Divalent cations of phosphorus

Phosphenium ions, not to be confused with phosphonium or phosphirenium, are divalent cations of phosphorus of the form [PR2]+. Phosphenium ions have long been proposed as reaction intermediates.

<span class="mw-page-title-main">Lanthanocene</span>

A lanthanocene is a type of metallocene compound that contains an element from the lanthanide series. The most common lanthanocene complexes contain two cyclopentadienyl anions and an X type ligand, usually hydride or alkyl ligand.

A Fischer carbene is a type of transition metal carbene complex, which is an organometallic compound containing a divalent organic ligand. In a Fischer carbene, the carbene ligand is a σ-donor π-acceptor ligand. Because π-backdonation from the metal centre is generally weak, the carbene carbon is electrophilic.

In organometallic chemistry, metal tetranorbornyls are compounds with the formula M(nor)4 (M = a metal in a +4 oxidation state) (1-nor = 4bicyclo[2.2.1]hept-1-yl) and are one of the largest series of tetraalkyl complexes derived from identical ligands. Metal tetranorbornyls display uniform stoichiometry, low-spin configurations, and high stability, which can be attributed to their +4 oxidation state metal center. The stability of metal tetranorbornyls is predominately considered to be derived from the unfavorable β-hydride elimination. Computational calculations have determined that London dispersion effects significantly contribute to the stability of metal tetranorbornyls. Specifically, Fe(nor)4 has a stabilization of 45.9 kcal/mol−1. Notable metal tetranorbornyls are those synthesized with metal centers of cobalt, manganese, or iron.

Trimethylenemethane complexes are metal complexes of the organic compound trimethylenemethane. Several examples are known, and some have been employed in organic synthesis.

The stabilization of bismuth's +3 oxidation state due to the inert pair effect yields a plethora of organometallic bismuth-transition metal compounds and clusters with interesting electronics and 3D structures.

<span class="mw-page-title-main">Disulfidobis(tricarbonyliron)</span> Chemical compound

Disulfidobis(tricarbonyliron), or Fe2(μ-S2)(CO)6, is an organometallic molecule used as a precursor in the synthesis of iron-sulfur compounds. Popularized as a synthetic building block by Dietmar Seyferth, Fe2(μ-S2)(CO)6 is commonly used to make mimics of the H-cluster in [FeFe]-hydrogenase. Much of the reactivity of Fe2(μ-S2)(CO)6 proceeds through its sulfur-centered dianion, [Fe2(μ-S)2(CO)2]2-.

References

  1. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0141". National Institute for Occupational Safety and Health (NIOSH).
  2. Even, J.; Yakushev, A.; Dullmann, C. E.; Haba, H.; Asai, M.; Sato, T. K.; Brand, H.; Di Nitto, A.; Eichler, R.; Fan, F. L.; Hartmann, W.; Huang, M.; Jager, E.; Kaji, D.; Kanaya, J.; Kaneya, Y.; Khuyagbaatar, J.; Kindler, B.; Kratz, J. V.; Krier, J.; Kudou, Y.; Kurz, N.; Lommel, B.; Miyashita, S.; Morimoto, K.; Morita, K.; Murakami, M.; Nagame, Y.; Nitsche, H.; et al. (2014). "Synthesis and detection of a seaborgium carbonyl complex". Science. 345 (6203): 1491–3. Bibcode:2014Sci...345.1491E. doi:10.1126/science.1255720. PMID   25237098. S2CID   206558746.(subscription required)
  3. Bruno, Sofia M.; Valente, Anabela A.; Gonçalves, Isabel S.; Pillinger, Martyn (2023). "Group 6 Carbonyl Complexes of N,O,P-Ligands as Precursors of High-Valent Metal-Oxo Catalysts for Olefin Epoxidation". Coordination Chemistry Reviews. 478: 214983. doi: 10.1016/j.ccr.2022.214983 . hdl: 10773/40120 . S2CID   255329673.
  4. Jost, A.; Rees, B.; Yelon, W. B. (1975-11-01). "Electronic structure of chromium hexacarbonyl at 78 K. I. Neutron diffraction study". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 31 (11): 2649–2658. doi:10.1107/s0567740875008394. ISSN   0567-7408.
  5. Whitaker, A.; Jeffery, J. W. (1967-12-10). "The crystal structure of chromium hexacarbonyl". Acta Crystallographica. 23 (6): 977–984. doi:10.1107/S0365110X67004153.
  6. Kunze, Kathryn L.; Davidson, Ernest R. (March 1992). "Energetics and electronic structure of chromium hexacarbonyl". The Journal of Physical Chemistry. 96 (5): 2129–2141. doi:10.1021/j100184a022. ISSN   0022-3654.
  7. Johnson, Jeffrey B.; Klemperer, W. G. (October 1977). "A molecular orbital analysis of electronic structure and bonding in chromium hexacarbonyl". Journal of the American Chemical Society. 99 (22): 7132–7137. doi:10.1021/ja00464a006. ISSN   0002-7863.
  8. Rees, Bernard; Mitschler, Andre (December 1976). "Electronic structure of chromium hexacarbonyl at liquid nitrogen temperature. 2. Experimental study (x-ray and neutron diffraction) of .sigma. and .pi. bonding". Journal of the American Chemical Society. 98 (25): 7918–7924. doi:10.1021/ja00441a005. ISSN   0002-7863.
  9. Schreiner, A. F.; Brown, Theodore L. (June 1968). "A semiempirical molecular orbital model for Cr(CO)6, Fe(CO)5, and Ni(CO)4". Journal of the American Chemical Society. 90 (13): 3366–3374. doi:10.1021/ja01015a013. ISSN   0002-7863.
  10. Rosa, Angela; Baerends, Evert Jan; van Gisbergen, Stan J. A.; van Lenthe, Erik; Groeneveld, Jeroen A.; Snijders, Jaap G. (1999-11-01). "Electronic Spectra of M(CO) 6 (M = Cr, Mo, W) Revisited by a Relativistic TDDFT Approach". Journal of the American Chemical Society. 121 (44): 10356–10365. doi:10.1021/ja990747t. ISSN   0002-7863.
  11. Costamagna, J. A.; Granifo, J. (1985). "(Substituted Thiourea)Pentacarbonylchromium(0) Complexes". Inorganic Syntheses. Inorganic Syntheses. Vol. 23. pp. 1–4. doi:10.1002/9780470132548.ch1. ISBN   9780470132548.
  12. Simon, John D.; Xie, Xiaoliang (December 1986). "Photodissociation of chromium hexacarbonyl in solution: direct observation of the formation of pentacarbonyl(methanol)chromium". The Journal of Physical Chemistry. 90 (26): 6751–6753. doi:10.1021/j100284a005. ISSN   0022-3654.
  13. Perutz, Robin N.; Turner, James J. (1975). "Photochemistry of the Group 6 Hexacarbonyls in Low-Temperature Matrixes. III. Interaction of the Pentacarbonyls with Noble Gases and Other Matrixes". Journal of the American Chemical Society. 97 (17): 4791–800. doi:10.1021/ja00850a001.
  14. Jennings, Wyn (1970). "Photodimerization of norbornadiene using chromium hexacarbonyl". Journal of the American Chemical Society. 92 (10): 3199–3200. doi:10.1021/ja00713a055.
  15. Elschenbroich, C. (2006). Organometallics. Weinheim: Wiley-VCH. ISBN   978-3-527-29390-2.
  16. Herndon, James W. (2001). "Pentacarbonyl(methoxyphenylcarbene)chromium(0)". e-EROS Encyclopedia of Reagents for Organic Synthesis.
  17. Katzenellenbogen, John (1998). "Preparation of Cyclopentadienyltricarbonylrhenium Complexes Using a Double Ligand-Transfer Reaction". Organometallics. 17 (10): 2009–2017. doi:10.1021/om971018u.
  18. Patnaik, Pradyot (2003). "Chromium hexacarbonyl". Handbook of Inorganic Chemicals. McGraw-Hill Professional. pp. 222–223. ISBN   978-0-07-049439-8.