Carbonyl bromide

Last updated
Carbonyl bromide [1]
Structural formula of carbonyl bromide Bromphosgen.svg
Structural formula of carbonyl bromide
Ball-and-stick model of carbonyl bromide Carbonyl-bromide-3D-balls.png
Ball-and-stick model of carbonyl bromide
Names
Preferred IUPAC name
Carbonyl dibromide
Other names
Bromophosgene, carbonic dibromide
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/CBr2O/c2-1(3)4 Yes check.svgY
    Key: MOIPGXQKZSZOQX-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/CBr2O/c2-1(3)4
    Key: MOIPGXQKZSZOQX-UHFFFAOYAM
  • BrC(Br)=O
Properties
COBr2
Molar mass 187.818 g·mol−1
Appearancecolorless liquid
Density 2.52 g/mL at 15 °C
Boiling point 64.5 °C (148.1 °F; 337.6 K) decomposes
reacts
Thermochemistry
61.8 J/(mol·K) (gas)
Std molar
entropy
(S298)
309.1 J/(mol·K) (gas)
−127.2 or −145.2 kJ/mol (liquid)
−96.2 or −114 kJ/mol (gas)
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
4
0
1
Related compounds
Related compounds
Carbonyl fluoride
Phosgene
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Carbonyl bromide, also known as bromophosgene, is a carbon oxohalide and a bromine analogue of phosgene, with the chemical formula COBr2. It is a colorless liquid. Carbonyl bromide is a decomposition product of halon compounds used in fire extinguishers. [2]

Synthesis and reactions

Carbonyl bromide is formed by the oxidation of carbon tetrabromide with sulfuric acid:

CBr4 + H2SO4 → COBr2 + SO2 + Br2 + H2O

In contrast to phosgene, carbonyl bromide cannot be produced efficiently by halogenation of carbon monoxide. The bromination of carbon monoxide follows this equation:

CO + Br2 ⇌ COBr2

But the process is slow at room temperature. Increasing temperature, in order to increase the reaction rate, results in a further shift of the chemical equilibrium towards the educts (since ΔRH < 0 and ΔRS < 0). [3] [4] [ clarification needed ]

Carbonyl bromide slowly decomposes to carbon monoxide and elemental bromine even at low temperatures. [5] It is also sensitive to hydrolysis, breaking down into hydrogen bromide and carbon dioxide.

Related Research Articles

<span class="mw-page-title-main">Bromine</span> Chemical element with atomic number 35 (Br)

Bromine is a chemical element; it has symbol Br and atomic number 35. It is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig and Antoine Jérôme Balard, its name was derived from Ancient Greek βρῶμος (bromos) 'stench', referring to its sharp and pungent smell.

<span class="mw-page-title-main">Carbon monoxide</span> Colourless, odourless, tasteless and toxic gas

Carbon monoxide is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simplest carbon oxide. In coordination complexes, the carbon monoxide ligand is called carbonyl. It is a key ingredient in many processes in industrial chemistry.

<span class="mw-page-title-main">Phosgene</span> Toxic gaseous compound (COCl2)

Phosgene is an organic chemical compound with the formula COCl2. It is a toxic, colorless gas; in low concentrations, its musty odor resembles that of freshly cut hay or grass. It can be thought of chemically as the double acyl chloride analog of carbonic acid, or structurally as formaldehyde with the hydrogen atoms replaced by chlorine atoms. Phosgene is a valued and important industrial building block, especially for the production of precursors of polyurethanes and polycarbonate plastics.

Phosphorus trifluoride (formula PF3), is a colorless and odorless gas. It is highly toxic and reacts slowly with water. Its main use is as a ligand in metal complexes. As a ligand, it parallels carbon monoxide in metal carbonyls, and indeed its toxicity is due to its binding with the iron in blood hemoglobin in a similar way to carbon monoxide.

<span class="mw-page-title-main">Gold(III) chloride</span> Chemical compound

Gold(III) chloride, traditionally called auric chloride, is an inorganic compound of gold and chlorine with the molecular formula Au2Cl6. The "III" in the name indicates that the gold has an oxidation state of +3, typical for many gold compounds. It has two forms, the monohydrate (AuCl3·H2O) and the anhydrous form, which are both hygroscopic and light-sensitive solids. This compound is a dimer of AuCl3. This compound has a few uses, such as an oxidizing agent and for catalyzing various organic reactions.

<span class="mw-page-title-main">Ammonium bromide</span> Chemical compound

Ammonium bromide, NH4Br, is the ammonium salt of hydrobromic acid. The chemical crystallizes in colorless prisms, possessing a saline taste; it sublimes on heating and is easily soluble in water. On exposure to air it gradually assumes a yellow color because of the oxidation of traces of bromide (Br) to bromine (Br2).

<span class="mw-page-title-main">Carbon tetrabromide</span> Chemical compound

Carbon tetrabromide, CBr4, also known as tetrabromomethane, is a bromide of carbon. Both names are acceptable under IUPAC nomenclature.

<span class="mw-page-title-main">Aluminium bromide</span> Chemical compound

Aluminium bromide is any chemical compound with the empirical formula AlBrx. Aluminium tribromide is the most common form of aluminium bromide. It is a colorless, sublimable hygroscopic solid; hence old samples tend to be hydrated, mostly as aluminium tribromide hexahydrate (AlBr3·6H2O).

<span class="mw-page-title-main">Disulfur decafluoride</span> Chemical compound

Disulfur decafluoride is a chemical compound with the formula S2F10. It was discovered in 1934 by Denbigh and Whytlaw-Gray. Each sulfur atom of the S2F10 molecule is octahedral, and surrounded by five fluorine atoms and one sulfur atom. The two sulfur atoms are connected by a single bond. In the S2F10 molecule, the oxidation state of each sulfur atoms is +5, but their valency is 6. S2F10 is highly toxic, with toxicity four times that of phosgene.

<span class="mw-page-title-main">Hypobromite</span> Ion, and compounds containing the ion

The hypobromite ion, also called alkaline bromine water, is BrO. Bromine is in the +1 oxidation state. The Br–O bond length is 1.82 Å. Hypobromite is the bromine compound analogous to hypochlorites found in common bleaches, and in immune cells. In many ways, hypobromite functions in the same manner as hypochlorite, and is also used as a germicide and antiparasitic in both industrial applications, and in the immune system.

Tin(II) bromide is a chemical compound of tin and bromine with a chemical formula of SnBr2. Tin is in the +2 oxidation state. The stability of tin compounds in this oxidation state is attributed to the inert pair effect.

Carbonyl fluoride is a chemical compound with the formula COF2. It is a carbon oxohalide. This gas, like its analog phosgene, is colourless and highly toxic. The molecule is planar with C2v symmetry, bond lengths of 1.174 Å (C=O) and 1.312 Å (C–F), and an F–C–F bond angle of 108.0°.

Bromine compounds are compounds containing the element bromine (Br). These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.

<span class="mw-page-title-main">Calcium bromide</span> Chemical compound

Calcium bromide is the name for compounds with the chemical formula CaBr2(H2O)x. Individual compounds include the anhydrous material (x = 0), the hexahydrate (x = 6), and the rare dihydrate (x = 2). All are white powders that dissolve in water, and from these solutions crystallizes the hexahydrate. The hydrated form is mainly used in some drilling fluids.

<span class="mw-page-title-main">Indium(I) bromide</span> Chemical compound

Indium(I) bromide is a chemical compound of indium and bromine. It is a red crystalline compound that is isostructural with β-TlI and has a distorted rock salt structure. Indium(I) bromide is generally made from the elements, heating indium metal with InBr3. It has been used in the sulfur lamp. In organic chemistry, it has been found to promote the coupling of α, α-dichloroketones to 1-aryl-butane-1,4-diones. Oxidative addition reactions with for example alkyl halides to give alkyl indium halides and with NiBr complexes to give Ni-In bonds are known. It is unstable in water decomposing into indium metal and indium tribromide. When indium dibromide is dissolved in water, InBr is produced as a, presumably, insoluble red precipitate, that then rapidly decomposes.

<span class="mw-page-title-main">Beryllium bromide</span> Chemical compound

Beryllium bromide is the chemical compound with the formula BeBr2. It is very hygroscopic and dissolves well in water. The Be2+ cation, which is relevant to BeBr2, is characterized by the highest known charge density (Z/r = 6.45), making it one of the hardest cations and a very strong Lewis acid.

Organobromine chemistry is the study of the synthesis and properties of organobromine compounds, also called organobromides, which are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane.

Nitrosyl bromide is the chemical compound with the chemical formula NOBr. It is a red gas with a condensing point just below room temperature. It reacts with water.

<span class="mw-page-title-main">Dibromine monoxide</span> Chemical compound

Dibromine monoxide is the chemical compound composed of bromine and oxygen with the formula Br2O. It is a dark brown solid which is stable below −40 °C and is used in bromination reactions. It is similar to dichlorine monoxide, the monoxide of its halogen neighbor one period higher on the periodic table. The molecule is bent, with C2v molecular symmetry. The Br−O bond length is 1.85 Å and the Br−O−Br bond angle is 112°, similar to dichlorine monoxide.

<span class="mw-page-title-main">Tungsten hexabromide</span> Chemical compound

Tungsten hexabromide, also known as tungsten(VI) bromide, is a chemical compound of tungsten and bromine with the formula WBr6. It is an air-sensitive dark grey powder that decomposes above 200 °C to tungsten(V) bromide and bromine.

References

  1. Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, FL: CRC Press, pp. 3–96, 4–50, 5–26, ISBN   0-8493-0594-2
  2. US Occupational Safety and Health Administration (May 1996). "Common Fire Extinguishing Agents". Archived from the original on 2009-09-12. Retrieved 2009-11-21.
  3. T.A. Ryan; E.A. Seddon; K.R. Seddon; C. Ryan (24 May 1996). Phosgene: And Related Carbonyl Halides. pp. 669–671. ISBN   9780080538808 . Retrieved April 11, 2015.
  4. Parkington, Michael J.; Ryan, T. Anthony; Seddon, Kenneth R. (1997). "Carbonyl dibromide: A novel reagent for the synthesis of metal bromides and bromide oxides". Journal of the Chemical Society, Dalton Transactions (2): 257–262. doi:10.1039/A603977D.
  5. Katrizsky, Alan R.; Meth-Cohn, Otto; Wees, Charles W. (1995), Organic Functional Group Transformations, vol. 6, Elsevier, pp. 417–8, ISBN   978-0-08-042704-1 , retrieved 2009-11-23