18-electron rule

Last updated

The 18-electron rule is a chemical rule of thumb used primarily for predicting and rationalizing formulas for stable transition metal complexes, especially organometallic compounds. [1] The rule is based on the fact that the valence orbitals in the electron configuration of transition metals consist of five (n−1)d orbitals, one ns orbital, and three np orbitals, where n is the principal quantum number. These orbitals can collectively accommodate 18 electrons as either bonding or non-bonding electron pairs. This means that the combination of these nine atomic orbitals with ligand orbitals creates nine molecular orbitals that are either metal-ligand bonding or non-bonding. When a metal complex has 18 valence electrons, it is said to have achieved the same electron configuration as the noble gas in the period, lending stability to the complex. Transition metal complexes that deviate from the rule are often interesting or useful because they tend to be more reactive. The rule is not helpful for complexes of metals that are not transition metals. The rule was first proposed by American chemist Irving Langmuir in 1921. [1] [2]

Contents

Applicability

The rule usefully predicts the formulas for low-spin complexes of the Cr, Mn, Fe, and Co triads. Well-known examples include ferrocene, iron pentacarbonyl, chromium carbonyl, and nickel carbonyl.

Ligands in a complex determine the applicability of the 18-electron rule. In general, complexes that obey the rule are composed at least partly of π-acceptor ligands (also known as π-acids). This kind of ligand exerts a very strong ligand field, which lowers the energies of the resultant molecular orbitals so that they are favorably occupied. Typical ligands include olefins, phosphines, and CO. Complexes of π-acids typically feature metal in a low-oxidation state. The relationship between oxidation state and the nature of the ligands is rationalized within the framework of π backbonding.

Consequences for reactivity

Compounds that obey the 18-electron rule are typically "exchange inert". Examples include [Co(NH3)6]Cl3, Mo(CO)6, and [Fe(CN)6]4−. In such cases, in general ligand exchange occurs via dissociative substitution mechanisms, wherein the rate of reaction is determined by the rate of dissociation of a ligand. On the other hand, 18-electron compounds can be highly reactive toward electrophiles such as protons, and such reactions are associative in mechanism, being acid-base reactions.

Complexes with fewer than 18 valence electrons tend to show enhanced reactivity. Thus, the 18-electron rule is often a recipe for non-reactivity in either a stoichiometric or a catalytic sense.

Duodectet rule

Computational findings suggest valence p-orbitals on the metal participate in metal-ligand bonding, albeit weakly. [3] However, Weinhold and Landis within the context of natural bond orbitals do not count the metal p-orbitals in metal-ligand bonding, [4] although these orbitals are still included as polarization functions. This results in a duodectet (12-electron) rule for five d-orbitals and one s-orbital only.

The current consensus in the general chemistry community is that unlike the singular octet rule for main group elements, transition metals do not strictly obey either the 12-electron or 18-electron rule, but that the rules describe the lower bound and upper bound of valence electron count respectively. [5] [6] Thus, while transition metal d-orbital and s-orbital bonding readily occur, the involvement of the higher energy and more spatially diffuse p-orbitals in bonding depends on the central atom and coordination environment. [7] [8]

Exceptions

π-donor or σ-donor ligands with small interactions with the metal orbitals lead to a weak ligand field which increases the energies of t2g orbitals. These molecular orbitals become non-bonding or weakly anti-bonding orbitals (small Δoct). Therefore, addition or removal of electron has little effect on complex stability. In this case, there is no restriction on the number of d-electrons and complexes with 12–22 electrons are possible. Small Δoct makes filling eg* possible (>18 e) and π-donor ligands can make t2g antibonding (<18 e). These types of ligand are located in the low-to-medium part of the spectrochemical series. For example: [TiF6]2− (Ti(IV), d0, 12 e), [Co(NH3)6]3+ (Co(III), d6, 18 e), [Cu(OH2)6]2+ (Cu(II), d9, 21 e).

In terms of metal ions, Δoct increases down a group as well as with increasing oxidation number. Strong ligand fields lead to low-spin complexes which cause some exceptions to the 18-electron rule.

16-electron complexes

An important class of complexes that violate the 18e rule are the 16-electron complexes with metal d8 configurations. All high-spin d8 metal ions are octahedral (or tetrahedral), but the low-spin d8 metal ions are all square planar. Important examples of square-planar low-spin d8 metal Ions are Rh(I), Ir(I), Ni(II), Pd(II), and Pt(II). At picture below is shown the splitting of the d subshell in low-spin square-planar complexes. Examples are especially prevalent for derivatives of the cobalt and nickel triads. Such compounds are typically square-planar. The most famous example is Vaska's complex (IrCl(CO)(PPh3)2), [PtCl4]2−, and Zeise's salt [PtCl3(η2-C2H4)]. In such complexes, the dz2 orbital is doubly occupied and nonbonding.

Chem507f09sqvstet2.png

Many catalytic cycles operate via complexes that alternate between 18-electron and square-planar 16-electron configurations. Examples include Monsanto acetic acid synthesis, hydrogenations, hydroformylations, olefin isomerizations, and some alkene polymerizations.

Other violations can be classified according to the kinds of ligands on the metal center.

Bulky ligands

Bulky ligands can preclude the approach of the full complement of ligands that would allow the metal to achieve the 18 electron configuration. Examples:

Sometimes such complexes engage in agostic interactions with the hydrocarbon framework of the bulky ligand. For example:

High-spin complexes

High-spin metal complexes have singly occupied orbitals and may not have any empty orbitals into which ligands could donate electron density. In general, there are few or no π-acidic ligands in the complex. These singly occupied orbitals can combine with the singly occupied orbitals of radical ligands (e.g., oxygen), or addition of a strong field ligand can cause electron-pairing, thus creating a vacant orbital that it can donate into. Examples:

Complexes containing strongly π-donating ligands often violate the 18-electron rule. These ligands include fluoride (F), oxide (O2−), nitride (N3−), alkoxides (RO), and imides (RN2−). Examples:

In the latter case, there is substantial donation of the nitrogen lone pairs to the Mo (so the compound could also be described as a 16 e compound). This can be seen from the short Mo–N bond length, and from the angle Mo–N–C(R), which is nearly 180°. Counter-examples:

In these cases, the M=O bonds are "pure" double bonds (i.e., no donation of the lone pairs of the oxygen to the metal), as reflected in the relatively long bond distances.

π-donating ligands

Ligands where the coordinating atom bear nonbonding lone pairs often stabilize unsaturated complexes. Metal amides and alkoxides often violate the 18e rule

Combinations of effects

The above factors can sometimes combine. Examples include

Higher electron counts

Some complexes have more than 18 electrons. Examples:

Often, cases where complexes have more than 18 valence electrons are attributed to electrostatic forces – the metal attracts ligands to itself to try to counterbalance its positive charge, and the number of electrons it ends up with is unimportant. In the case of the metallocenes, the chelating nature of the cyclopentadienyl ligand stabilizes its bonding to the metal. Somewhat satisfying are the two following observations: cobaltocene is a strong electron donor, readily forming the 18-electron cobaltocenium cation; and nickelocene tends to react with substrates to give 18-electron complexes, e.g. CpNiCl(PR3) and free CpH.

In the case of nickelocene, the extra two electrons are in orbitals which are weakly metal-carbon antibonding; this is why it often participates in reactions where the M–C bonds are broken and the electron count of the metal changes to 18. [9]

The 20-electron systems TM(CO)8 (TM = Sc, Y, La) have a cubic (Oh) equilibrium geometry and a singlet (1A1g) electronic ground state. There is one occupied valence MO with a2u symmetry, which is formed only by ligand orbitals without a contribution from the metal AOs. But the adducts TM(CO)8 (TM=Sc, Y, La) fulfill the 18-electron rule when one considers only those valence electrons, which occupy metal–ligand bonding orbitals. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Coordination complex</span> Molecule or ion containing ligands datively bonded to a central metallic atom

A coordination complex consists of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents. Many metal-containing compounds, especially those that include transition metals, are coordination complexes.

<span class="mw-page-title-main">Metallocene</span>

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride, vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

<span class="mw-page-title-main">Conjugated system</span> System of connected p-orbitals with delocalized electrons in a molecule

In theoretical chemistry, a conjugated system is a system of connected p-orbitals with delocalized electrons in a molecule, which in general lowers the overall energy of the molecule and increases stability. It is conventionally represented as having alternating single and multiple bonds. Lone pairs, radicals or carbenium ions may be part of the system, which may be cyclic, acyclic, linear or mixed. The term "conjugated" was coined in 1899 by the German chemist Johannes Thiele.

<span class="mw-page-title-main">Octet rule</span> Chemical rule of thumb

The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens; although more generally the rule is applicable for the s-block and p-block of the periodic table. Other rules exist for other elements, such as the duplet rule for hydrogen and helium, or the 18-electron rule for transition metals.

<span class="mw-page-title-main">Valence electron</span> An outer shell electron which is associated with an atom

In chemistry and physics, a valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed. In a single covalent bond, both atoms in the bond contribute one valence electron in order to form a shared pair.

<span class="mw-page-title-main">Cyclopentadienyl complex</span> Coordination complex of a metal and Cp⁻ ions

A cyclopentadienyl complex is a coordination complex of a metal and cyclopentadienyl groups. Cyclopentadienyl ligands almost invariably bind to metals as a pentahapto (η5-) bonding mode. The metal–cyclopentadienyl interaction is typically drawn as a single line from the metal center to the center of the Cp ring.

<span class="mw-page-title-main">Pi backbonding</span> Movement of electrons from one atoms orbital to a symmetric antibonding orbital on another

In chemistry, π backbonding, also called π backdonation, is when electrons move from an atomic orbital on one atom to an appropriate symmetry antibonding orbital on a π-acceptor ligand. It is especially common in the organometallic chemistry of transition metals with multi-atomic ligands such as carbon monoxide, ethylene or the nitrosonium cation. Electrons from the metal are used to bond to the ligand, in the process relieving the metal of excess negative charge. Compounds where π backbonding occurs include Ni(CO)4 and Zeise's salt. IUPAC offers the following definition for backbonding:

A description of the bonding of π-conjugated ligands to a transition metal which involves a synergic process with donation of electrons from the filled π-orbital or lone electron pair orbital of the ligand into an empty orbital of the metal (donor–acceptor bond), together with release (back donation) of electrons from an nd orbital of the metal (which is of π-symmetry with respect to the metal–ligand axis) into the empty π*-antibonding orbital of the ligand.

<span class="mw-page-title-main">Vaska's complex</span> Chemical compound

Vaska's complex is the trivial name for the chemical compound trans-carbonylchlorobis(triphenylphosphine)iridium(I), which has the formula IrCl(CO)[P(C6H5)3]2. This square planar diamagnetic organometallic complex consists of a central iridium atom bound to two mutually trans triphenylphosphine ligands, carbon monoxide and a chloride ion. The complex was first reported by J. W. DiLuzio and Lauri Vaska in 1961. Vaska's complex can undergo oxidative addition and is notable for its ability to bind to O2 reversibly. It is a bright yellow crystalline solid.

<span class="mw-page-title-main">Nickelocene</span> Chemical compound

Nickelocene is the organonickel compound with the formula Ni(η5-C5H5)2. Also known as bis(cyclopentadienyl)nickel or NiCp2, this bright green paramagnetic solid is of enduring academic interest, although it does not yet have any known practical applications.

<span class="mw-page-title-main">Square planar molecular geometry</span>

The square planar molecular geometry in chemistry describes the stereochemistry that is adopted by certain chemical compounds. As the name suggests, molecules of this geometry have their atoms positioned at the corners.

<span class="mw-page-title-main">Metal carbonyl</span> Coordination complexes of transition metals with carbon monoxide ligands

Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.

In inorganic chemistry, the cis effect is defined as the labilization of CO ligands that are cis to other ligands. CO is a well-known strong pi-accepting ligand in organometallic chemistry that will labilize in the cis position when adjacent to ligands due to steric and electronic effects. The system most often studied for the cis effect is an octahedral complex M(CO)
5
X
where X is the ligand that will labilize a CO ligand cis to it. Unlike the trans effect, which is most often observed in 4-coordinate square planar complexes, the cis effect is observed in 6-coordinate octahedral transition metal complexes. It has been determined that ligands that are weak sigma donors and non-pi acceptors seem to have the strongest cis-labilizing effects. Therefore, the cis effect has the opposite trend of the trans-effect, which effectively labilizes ligands that are trans to strong pi accepting and sigma donating ligands.

<span class="mw-page-title-main">Borylene</span>

A borylene is the boron analogue of a carbene. The general structure is R-B: with R an organic residue and B a boron atom with two unshared electrons. Borylenes are of academic interest in organoboron chemistry. A singlet ground state is predominant with boron having two vacant sp2 orbitals and one doubly occupied one. With just one additional substituent the boron is more electron deficient than the carbon atom in a carbene. For this reason stable borylenes are more uncommon than stable carbenes. Some borylenes such as boron monofluoride (BF) and boron monohydride (BH) the parent compound also known simply as borylene, have been detected in microwave spectroscopy and may exist in stars. Other borylenes exist as reactive intermediates and can only be inferred by chemical trapping.

<span class="mw-page-title-main">Silylone</span> Class of organosilicon compounds

Silylones are a class of zero-valent monatomic silicon complexes, characterized as having two lone pairs and two donor-acceptor ligand interactions stabilizing a silicon(0) center. Synthesis of silylones generally involves the use of sterically bulky carbenes to stabilize highly reactive Si(0) centers. For this reason, silylones are sometimes referred to siladicarbenes. To date, silylones have been synthesized with cyclic alkyl amino carbenes (cAAC) and bidentate N-heterocyclic carbenes (bis-NHC). They are capable of reactions with a variety of substrates, including chalcogens and carbon dioxide.

<i>N</i>-heterocyclic silylene Chemical compound

An N-Heterocyclic silylene (NHSi) is an uncharged heterocyclic chemical compound consisting of a divalent silicon atom bonded to two nitrogen atoms. The isolation of the first stable NHSi, also the first stable dicoordinate silicon compound, was reported in 1994 by Michael Denk and Robert West three years after Anthony Arduengo first isolated an N-heterocyclic carbene, the lighter congener of NHSis. Since their first isolation, NHSis have been synthesized and studied with both saturated and unsaturated central rings ranging in size from 4 to 6 atoms. The stability of NHSis, especially 6π aromatic unsaturated five-membered examples, make them useful systems to study the structure and reactivity of silylenes and low-valent main group elements in general. Though not used outside of academic settings, complexes containing NHSis are known to be competent catalysts for industrially important reactions. This article focuses on the properties and reactivity of five-membered NHSis.

A transition metal phosphido complex is a coordination complex containing a phosphido ligand (R2P, where R = H, organic substituent). With two lone pairs on phosphorus, the phosphido anion (R2P) is comparable to an amido anion (R2N), except that the M-P distances are longer and the phosphorus atom is more sterically accessible. For these reasons, phosphido is often a bridging ligand. The -PH2 ion or ligand is also called phosphanide or phosphido ligand.

<span class="mw-page-title-main">Triboracyclopropenyl</span>

The triboracyclopropenyl fragment is a cyclic structural motif in boron chemistry, named for its geometric similarity to cyclopropene. In contrast to nonplanar borane clusters that exhibit higher coordination numbers at boron (e.g., through 3-center 2-electron bonds to bridging hydrides or cations), triboracyclopropenyl-type structures are rings of three boron atoms where substituents at each boron are also coplanar to the ring. Triboracyclopropenyl-containing compounds are extreme cases of inorganic aromaticity. They are the lightest and smallest cyclic structures known to display the bonding and magnetic properties that originate from fully delocalized electrons in orbitals of σ and π symmetry. Although three-membered rings of boron are frequently so highly strained as to be experimentally inaccessible, academic interest in their distinctive aromaticity and possible role as intermediates of borane pyrolysis motivated extensive computational studies by theoretical chemists. Beginning in the late 1980s with mass spectrometry work by Anderson et al. on all-boron clusters, experimental studies of triboracyclopropenyls were for decades exclusively limited to gas-phase investigations of the simplest rings (ions of B3). However, more recent work has stabilized the triboracyclopropenyl moiety via coordination to donor ligands or transition metals, dramatically expanding the scope of its chemistry.

<span class="mw-page-title-main">Alkaline earth octacarbonyl complex</span> Class of chemical compounds

Alkaline earth octacarbonyl complexes are a class of neutral compounds that have the general formula M(CO)8 where M is a heavy Group 2 element (Ca, Sr, or Ba). The metal center has a formal oxidation state of 0 and the complex has a high level of symmetry belonging to the cubic Oh point group. These complexes are isolable in a low-temperature neon matrix, but are not frequently used in applications due to their instability in air and water. The bonding within these complexes is controversial with some arguing the bonding resembles a model similar to bonding in transition metal carbonyl complexes which abide by the 18-electron rule, and others arguing the molecule more accurately contains ionic bonds between the alkaline earth metal center and the carbonyl ligands. Complexes of Be(CO)8 and Mg(CO)8 are not synthetically possible due to inaccessible (n-1)d orbitals. Beryllium has been found to form a dinuclear homoleptic carbonyl and magnesium a mononuclear heteroleptic carbonyl, both with only two carbonyl ligands instead of eight to each metal atom.

<span class="mw-page-title-main">Carbones</span> Class of molecules

Carbones are a class of molecules containing a carbon atom in the 1D excited state with a formal oxidation state of zero where all four valence electrons exist as unbonded lone pairs. These carbon-based compounds are of the formula CL2 where L is a strongly σ-donating ligand, typically a phosphine (carbodiphosphoranes) or a N-heterocyclic carbene/NHC (carbodicarbenes), that stabilises the central carbon atom through donor-acceptor bonds. Carbones possess high-energy orbitals with both σ- and π-symmetry, making them strong Lewis bases and strong π-backdonor substituents. Carbones possess high proton affinities and are strong nucleophiles which allows them to function as ligands in a variety of main group and transition metal complexes. Carbone-coordinated elements also exhibit a variety of different reactivities and catalyse various organic and main group reactions.  

<span class="mw-page-title-main">Organoberyllium</span> Organoberyllium Complex in Main Group Chemistry

An organoberyllium compound is an organometallic compound featuring the group 2 alkaline earth metal beryllium (Be). Beryllium is best known to have a +2 oxidation state and one of the smallest atoms and it is understudied in the periodic table. It is known to be highly reactive and extremely toxic and can cause berylliosis. The Be2+ cation is characterized by the highest known charge density (Z/r = 6.45), making it one of the hardest cations and a very strong Lewis acid. It is most commonly used to coordinate other elements and can portray many types of compound through different ligands attachment. Coordination in beryllium can range from a coordination number of two to four. Most common ligands attached to beryllium are halides, hydride (like beryllium borohydride in a three-center two-electron bond), methyl, aryl, and alkyl. Beryllium can form complexes with known organic compounds such as phosphines, N-hetereocyclic carbenes (NHC), cyclic alkyl amino carbenes (CAAC), and β-diketiminates (NacNac). They can best be prepared by transmetallation or alkylation of beryllium chloride.

References

  1. 1 2 Langmuir, I. (1921). "Types of Valence". Science . 54 (1386): 59–67. Bibcode:1921Sci....54...59L. doi:10.1126/science.54.1386.59. PMID   17843674.
  2. Jensen, William B. (2005). "The Origin of the 18-Electron Rule". Journal of Chemical Education . 82 (1): 28. Bibcode:2005JChEd..82...28J. doi:10.1021/ed082p28.
  3. Frenking, Gernot; Shaik, Sason, eds. (May 2014). "Chapter 7: Chemical bonding in Transition Metal Compounds". The Chemical Bond: Chemical Bonding Across the Periodic Table. Wiley-VCH. ISBN   978-3-527-33315-8.
  4. Landis, C. R.; Weinhold, F. (2007). "Valence and extra-valence orbitals in main group and transition metal bonding". Journal of Computational Chemistry . 28 (1): 198–203. doi: 10.1002/jcc.20492 . PMID   17063478.
  5. Frenking, Gernot; Fröhlich, Nikolaus (2000). "The Nature of the Bonding in Transition-Metal Compounds". Chemical Reviews . 100 (2): 717–774. doi:10.1021/cr980401l. PMID   11749249.
  6. Zhao, Lili; Holzmann, Nicole; Schwerdtfeger, Peter; Frenking, Gernot (2019). "Chemical Bonding and Bonding Models of Main-Group Compounds". Chemical Reviews. 119 (14): 8781–8845. doi:10.1021/acs.chemrev.8b00722. PMID   31251603. S2CID   195761899.
  7. Bayse, Craig; Hall, Michael (1999). "Prediction of the Geometries of Simple Transition Metal Polyhydride Complexes by Symmetry Analysis". Journal of the American Chemical Society . 121 (6): 1348–1358. doi:10.1021/ja981965+.
  8. King, R.B. (2000). "Structure and bonding in homoleptic transition metal hydride anions". Coordination Chemistry Reviews. 200–202: 813–829. doi:10.1016/S0010-8545(00)00263-0.
  9. Girolami, Gregory; Rauchfuss, Thomas; Angelici, Robert (1999). "Experiment 20". Synthesis and Technique in Inorganic Chemistry. Sausalito, California: University Science Books. ISBN   978-0-935702-48-4.
  10. Jin, Jiaye; Yang, Tao; Xin, Ke; Wang, Guanjun; Jin, Xiaoyang; Zhou, Mingfei; Frenking, Gernot (2018-04-25). "Octacarbonyl Anion Complexes of Group Three Transition Metals [TM(CO)8]− (TM=Sc, Y, La) and the 18-Electron Rule". Angewandte Chemie International Edition. 57 (21): 6236–6241. doi:10.1002/anie.201802590. ISSN   1433-7851. PMID   29578636.

Further reading