Pentamethylcyclopentadiene

Last updated
Pentamethylcyclopentadiene
Pentamethylcyclopentadien.svg
Pentamethylcyclopentadiene molecule ball.png
Names
Preferred IUPAC name
1,2,3,4,5-Pentamethylcyclopenta-1,3-diene
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.021.586 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C10H16/c1-6-7(2)9(4)10(5)8(6)3/h6H,1-5H3 X mark.svgN
    Key: WQIQNKQYEUMPBM-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C10H16/c1-6-7(2)9(4)10(5)8(6)3/h6H,1-5H3
    Key: WQIQNKQYEUMPBM-UHFFFAOYAI
  • CC1=C(C)C(C)C(C)=C1C
Properties
C10H16
Molar mass 136.238 g·mol−1
AppearanceColorless liquid [1]
Odor Mild [1]
Density 0.87 g/cm3 [2]
Boiling point 55 to 60 °C (131 to 140 °F; 328 to 333 K) at 13 mmHg (1.7 kPa)
Sparingly soluble
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Flammable
GHS labelling:
GHS-pictogram-flamme.svg
Warning
H226
Flash point 114 °C (237 °F; 387 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

1,2,3,4,5-Pentamethylcyclopentadiene is a cyclic diene with the formula C5(CH3)5H, often written C5Me5H, where Me is CH3. [3] It is a colorless liquid. [1]

Contents

1,2,3,4,5-Pentamethylcyclopentadiene is the precursor to the ligand 1,2,3,4,5-pentamethylcyclopentadienyl, which is often denoted Cp* (C5Me5) and read as "C P star", the "star" signifying the five methyl groups radiating from the core of the ligand. Thus, the 1,2,3,4,5-pentamethylcyclopentadiene's formula is also written Cp*H. In contrast to less-substituted cyclopentadiene derivatives, Cp*H is not prone to dimerization.

Synthesis

Pentamethylcyclopentadiene is commercially available. It was first prepared from tiglaldehyde and 2-butenyllithium, via 2,3,4,5-tetramethylcyclopent-2-enone, with a Nazarov cyclization reaction as a key step. [4]

Cp*H Synthesis 1.svg

Alternatively, 2-butenyllithium adds to ethyl acetate followed by acid-catalyzed dehydrocyclization: [5] [6]

Cp*H Synthesis 2.svg
Cp*Hampoule.jpg

Organometallic derivatives

Cp*–metal complexes
Cp*2Fe yellow
Cp*TiCl3red
[Cp*Fe(CO)2]2red-violet
[Cp*RhCl2]2red
[Cp*IrCl2]2orange
Cp*Re(CO)3colorless
Cp*Mo(CO)2CH3orange

Cp*H is a precursor to organometallic compounds containing the C
5
Me
5
ligand, commonly called Cp*. [7]

Some representative reactions leading to such Cp*–metal complexes follow: [8] Deprotonation with n-butyllithium:

Cp*H + C4H9Li → Cp*Li + C4H10

Synthesis of (pentamethylcyclopentadienyl)titanium trichloride:

Cp*Li + TiCl4 → Cp*TiCl3 + LiCl

Synthesis of (pentamethylcyclopentadienyl)iron dicarbonyl dimer from iron pentacarbonyl:

2 Cp*H + 2 Fe(CO)5]] → [η5-Cp*Fe(CO)2]2 + H2 + 6 CO

This method is analogous to the route to the related Cp complex, see cyclopentadienyliron dicarbonyl dimer.

Some Cp* complexes are prepared using silyl transfer:

Cp*Li + Me3SiCl → Cp*SiMe3 + LiCl
Cp*SiMe3 + TiCl4 → Cp*TiCl3 + Me3SiCl

A now-obsolete route to Cp* complexes involves the use of hexamethyl Dewar benzene. This method was traditionally used for preparation of the chloro-bridged dimers [Cp*IrCl2]2 and [Cp*RhCl2]2, but has been discontinued with the increased commercial availability of Cp*H. Such syntheses rely on a hydrohalic acid induced rearrangement of hexamethyl Dewar benzene [9] [10] to a substituted pentamethylcyclopentadiene prior to reaction with the hydrate of either iridium(III) chloride [11] or rhodium(III) chloride. [12]

C5Me5Ir2Cl2viaMe6DewarBen.png

Comparison to other Cp ligands

Structure of Bu3C5H3, a prototypical bulky cyclopentadiene (t-Bu)3C5H3.png
Structure of Bu3C5H3, a prototypical bulky cyclopentadiene

Complexes of pentamethylcyclopentadienyl differ in several ways from the more common cyclopentadienyl (Cp) derivatives. Being more electron-rich, Cp* is a stronger donor and dissociation, like ring-slippage, is more difficult with Cp* than with Cp. [13] The fluorinated ligand, (trifluoromethyl)tetramethylcyclopentadienyl, C5Me4CF3, combines the properties of Cp and Cp*: it possesses the steric bulk of Cp* but has electronic properties similar to Cp, the electron-donation from the methyl groups being "canceled out" by the electron-accepting nature of the trifluoromethyl substituent. [14] Its steric bulk stabilizes complexes with fragile ligands. Its bulk also attenuates intermolecular interactions, decreasing the tendency to form polymeric structures. Its complexes also tend to be more soluble in non-polar solvents. The methyl group in Cp* complexes can undergo C–H activation leading to "tuck-in complexes". Bulky cyclopentadienyl ligands are known that are far more sterically encumbered than Cp*.

See also

Related Research Articles

<span class="mw-page-title-main">Metallocene</span>

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride or vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

Ferrocene is an organometallic compound with the formula Fe(C5H5)2. The molecule is a complex consisting of two cyclopentadienyl rings bound to a central iron atom. It is an orange solid with a camphor-like odor, that sublimes above room temperature, and is soluble in most organic solvents. It is remarkable for its stability: it is unaffected by air, water, strong bases, and can be heated to 400 °C without decomposition. In oxidizing conditions it can reversibly react with strong acids to form the ferrocenium cation Fe(C5H5)+2. Ferrocene and the ferrocenium cation are sometimes abbreviated as Fc and Fc+ respectively.

<span class="mw-page-title-main">Cyclopentadienyl complex</span> Coordination complex of a metal and Cp⁻ ions

A cyclopentadienyl complex is a coordination complex of a metal and cyclopentadienyl groups. Cyclopentadienyl ligands almost invariably bind to metals as a pentahapto (η5-) bonding mode. The metal–cyclopentadienyl interaction is typically drawn as a single line from the metal center to the center of the Cp ring.

<span class="mw-page-title-main">Titanocene dichloride</span> Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

<span class="mw-page-title-main">Tebbe's reagent</span> Chemical compound

Tebbe's reagent is the organometallic compound with the formula (C5H5)2TiCH2ClAl(CH3)2. It is used in the methylidenation of carbonyl compounds, that is it converts organic compounds containing the R2C=O group into the related R2C=CH2 derivative. It is a red solid that is pyrophoric in the air, and thus is typically handled with air-free techniques. It was originally synthesized by Fred Tebbe at DuPont Central Research.

<span class="mw-page-title-main">Dewar benzene</span> Chemical compound

Dewar benzene (also spelled dewarbenzene) or bicyclo[2.2.0]hexa-2,5-diene is a bicyclic isomer of benzene with the molecular formula C6H6. The compound is named after James Dewar who included this structure in a list of possible C6H6 structures in 1869. However, he did not propose it as the structure of benzene, and in fact he supported the correct structure previously proposed by August Kekulé in 1865.

<span class="mw-page-title-main">Organotitanium chemistry</span>

Organotitanium chemistry is the science of organotitanium compounds describing their physical properties, synthesis, and reactions. Organotitanium compounds in organometallic chemistry contain carbon-titanium chemical bonds. They are reagents in organic chemistry and are involved in major industrial processes.

<span class="mw-page-title-main">Sodium tetraphenylborate</span> Chemical compound

Sodium tetraphenylborate is the organic compound with the formula NaB(C6H5)4. It is a salt, wherein the anion consists of four phenyl rings bonded to boron. This white crystalline solid is used to prepare other tetraphenylborate salts, which are often highly soluble in organic solvents. The compound is used in inorganic and organometallic chemistry as a precipitating agent for potassium, ammonium, rubidium, and cesium ions, and some organic nitrogen compounds.

<span class="mw-page-title-main">Sodium cyclopentadienide</span> Chemical compound

Sodium cyclopentadienide is an organosodium compound with the formula C5H5Na. The compound is often abbreviated as NaCp, where Cp is the cyclopentadienide anion. Sodium cyclopentadienide is a colorless solid, although samples often are pink owing to traces of oxidized impurities.

<span class="mw-page-title-main">Pentamethylcyclopentadienyl iridium dichloride dimer</span> Chemical compound

Pentamethylcyclopentadienyl iridium dichloride dimer is an organometallic compound with the formula [(C5(CH3)5IrCl2)]2, commonly abbreviated [Cp*IrCl2]2 This bright orange air-stable diamagnetic solid is a reagent in organometallic chemistry.

Organoiron chemistry is the chemistry of iron compounds containing a carbon-to-iron chemical bond. Organoiron compounds are relevant in organic synthesis as reagents such as iron pentacarbonyl, diiron nonacarbonyl and disodium tetracarbonylferrate. While iron adopts oxidation states from Fe(−II) through to Fe(VII), Fe(IV) is the highest established oxidation state for organoiron species. Although iron is generally less active in many catalytic applications, it is less expensive and "greener" than other metals. Organoiron compounds feature a wide range of ligands that support the Fe-C bond; as with other organometals, these supporting ligands prominently include phosphines, carbon monoxide, and cyclopentadienyl, but hard ligands such as amines are employed as well.

<span class="mw-page-title-main">Organoscandium chemistry</span> Chemistry of compounds containing a carbon to scandium chemical bond

Organoscandium chemistry is an area with organometallic compounds focused on compounds with at least one carbon to scandium chemical bond. The interest in organoscandium compounds is mostly academic but motivated by potential practical applications in catalysis, especially in polymerization. A common precursor is scandium chloride, especially its THF complex.

Organovanadium chemistry is the chemistry of organometallic compounds containing a carbon (C) to vanadium (V) chemical bond. Organovanadium compounds find only minor use as reagents in organic synthesis but are significant for polymer chemistry as catalysts.

<span class="mw-page-title-main">Rhodocene</span> Organometallic chemical compound

Rhodocene is a chemical compound with the formula [Rh(C5H5)2]. Each molecule contains an atom of rhodium bound between two planar aromatic systems of five carbon atoms known as cyclopentadienyl rings in a sandwich arrangement. It is an organometallic compound as it has (haptic) covalent rhodium–carbon bonds. The [Rh(C5H5)2] radical is found above 150 °C (302 °F) or when trapped by cooling to liquid nitrogen temperatures (−196 °C [−321 °F]). At room temperature, pairs of these radicals join via their cyclopentadienyl rings to form a dimer, a yellow solid.

Plumbocene is an organometallic compound of lead with the chemical formula Pb(C5H5)2. It is a member of the class of metallocenes. It is soluble in benzene, acetone, ether, and petroleum ether, and insoluble in water. Plumbocene is stable in cold water.

<span class="mw-page-title-main">Peter Maitlis</span> British chemist (1933–2022)

Peter Michael Maitlis, FRS was a British organometallic chemist.

<span class="mw-page-title-main">Hexamethylbenzene</span> Chemical compound

Hexamethylbenzene, also known as mellitene, is a hydrocarbon with the molecular formula C12H18 and the condensed structural formula C6(CH3)6. It is an aromatic compound and a derivative of benzene, where benzene's six hydrogen atoms have each been replaced by a methyl group. In 1929, Kathleen Lonsdale reported the crystal structure of hexamethylbenzene, demonstrating that the central ring is hexagonal and flat and thereby ending an ongoing debate about the physical parameters of the benzene system. This was a historically significant result, both for the field of X-ray crystallography and for understanding aromaticity.

<span class="mw-page-title-main">Metal bis(trimethylsilyl)amides</span>

Metal bis(trimethylsilyl)amides are coordination complexes composed of a cationic metal M with anionic bis(trimethylsilyl)amide ligands (the N 2 monovalent anion, or −N 2 monovalent group, and are part of a broader category of metal amides.

<span class="mw-page-title-main">Pentamethylcyclopentadienyl rhodium dichloride dimer</span> Chemical compound

Pentamethylcyclopentadienyl rhodium dichloride dimer is an organometallic compound with the formula [(C5(CH3)5RhCl2)]2, commonly abbreviated [Cp*RhCl2]2 This dark red air-stable diamagnetic solid is a reagent in organometallic chemistry.

<span class="mw-page-title-main">Transition metal phosphinimide complexes</span>

Transition metal phosphinimide complexes are metal complexes that contain phosphinimide ligands of the general formula NPR3 (R = organic substituent). Several coordination modes have been observed, including terminal and various bridging geometries. In the terminal bonding mode the M-N=P core is usually linear but some are quite bent. The preferred coordination type varies with the oxidation state and coligands on the metal and the steric and electronic properties of the R groups on phosphorus. Many transition metal phosphinimide complexes have been well-developed and, more recently, main group phosphinimide complexes have been synthesized.

References

  1. 1 2 3 https://pubchem.ncbi.nlm.nih.gov/compound/1_2_3_4_5-Pentamethylcyclopentadiene
  2. https://www.sigmaaldrich.com/GB/en/sds/aldrich/214027
  3. Elschenbroich, C.; Salzer, A. (1989). Organometallics: A Concise Introduction. VCH. p. 47. ISBN   9783527278183.
  4. De Vries, L. (1960). "Preparation of 1,2,3,4,5-Pentamethyl-cyclopentadiene, 1,2,3,4,5,5-Hexamethyl-cyclopentadiene, and 1,2,3,4,5-Pentamethyl-cyclopentadienylcarbinol". J. Org. Chem. 25 (10): 1838. doi:10.1021/jo01080a623.
  5. Threlkel, S.; Bercaw, J. E.; Seidler, P. F.; Stryker, J. M.; Bergman, R. G. (1993). "1,2,3,4,5-Pentamethylcyclopentadiene". Organic Syntheses .; Collective Volume, vol. 8, p. 505
  6. Fendrick, C. M.; Schertz, L. D.; Mintz, E. A.; Marks, T. J. (1992). Large-Scale Synthesis of 1,2,3,4,5-Pentamethylcyclopentadiene. Inorganic Syntheses. Vol. 29. pp. 193–198. doi:10.1002/9780470132609.ch47. ISBN   978-0-470-13260-9.
  7. Yamamoto, A. (1986). Organotransition Metal Chemistry: Fundamental Concepts and Applications . Wiley-Interscience. p. 105. ISBN   9780471891710.
  8. King, R. B.; Bisnette, M. B. (1967). "Organometallic chemistry of the transition metals XXI. Some π-pentamethylcyclopentadienyl derivatives of various transition metals". J. Organomet. Chem. 8 (2): 287–297. doi:10.1016/S0022-328X(00)91042-8.
  9. Paquette, L. A.; Krow, G. R. (1968). "Electrophilic Additions to Hexamethyldewarbenzene". Tetrahedron Lett. 9 (17): 2139–2142. doi:10.1016/S0040-4039(00)89761-0.
  10. Criegee, R.; Gruner, H. (1968). "Acid-catalyzed Rearrangements of Hexamethyl-prismane and Hexamethyl-Dewar-benzene". Angew. Chem. Int. Ed. Engl. 7 (6): 467–468. doi:10.1002/anie.196804672.
  11. Kang, J. W.; Mosley, K.; Maitlis, P. M. (1968). "Mechanisms of Reactions of Dewar Hexamethylbenzene with Rhodium and Iridium Chlorides". Chem. Commun. (21): 1304–1305. doi:10.1039/C19680001304.
  12. Kang, J. W.; Maitlis, P. M. (1968). "Conversion of Dewar Hexamethylbenzene to Pentamethylcyclopentadienylrhodium(III) Chloride". J. Am. Chem. Soc. 90 (12): 3259–3261. doi:10.1021/ja01014a063.
  13. Kuwabara, Takuya; Tezuka, Ryogen; Ishikawa, Mikiya; Yamazaki, Takuya; Kodama, Shintaro; Ishii, Youichi (2018-06-25). "Ring Slippage and Dissociation of Pentamethylcyclopentadienyl Ligand in an (η 5 -Cp*)Ir Complex with a κ 3 - O , C , O Tridentate Calix[4]arene Ligand under Mild Conditions". Organometallics. 37 (12): 1829–1832. doi:10.1021/acs.organomet.8b00257. ISSN   0276-7333.
  14. Gassman, Paul G.; Mickelson, John W.; Sowa, John R. (1992-08-01). "1,2,3,4-Tetramethyl-5-(trifluoromethyl)cyclopentadienide: a unique ligand with the steric properties of pentamethylcyclopentadienide and the electronic properties of cyclopentadienide". Journal of the American Chemical Society. 114 (17): 6942–6944. doi:10.1021/ja00043a065. ISSN   0002-7863.