Names | |
---|---|
Preferred IUPAC name Ethyl acetate | |
Systematic IUPAC name Ethyl ethanoate | |
Other names
| |
Identifiers | |
3D model (JSmol) | |
506104 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.005.001 |
E number | E1504 (additional chemicals) |
26306 | |
KEGG | |
PubChem CID | |
RTECS number |
|
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C4H8O2 | |
Molar mass | 88.106 g·mol−1 |
Appearance | Colorless liquid |
Odor | nail polish-like, fruity |
Density | 0.902 g/cm3 |
Melting point | −83.6 °C (−118.5 °F; 189.6 K) |
Boiling point | 77.1 °C (170.8 °F; 350.2 K) |
8.3 g/100 mL (at 20 °C) | |
Solubility in ethanol, acetone, diethyl ether , benzene | Miscible |
log P | 0.71 [1] |
Vapor pressure | 73 mmHg (9.7 kPa) at 20 °C [2] |
Acidity (pKa) | 25 |
−54.10×10−6 cm3/mol | |
Refractive index (nD) | 1.3720 |
Viscosity | 426 μPa·s (0.426 cP) at 25 °C |
Structure | |
1.78 D | |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards |
|
GHS labelling: | |
[3] | |
Danger | |
H225, H319, H336 [3] | |
P210, P233, P240, P305+P351+P338, P403+P235 [3] | |
NFPA 704 (fire diamond) | |
Flash point | −4 °C (25 °F; 269 K) |
Explosive limits | 2.0–11.5% [2] |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) | 11.3 g/kg, rat |
LC50 (median concentration) | 16,000 ppm (rat, 6 h) 12,295 ppm (mouse, 2 h) 1600 ppm (rat, 8 h) [4] |
LCLo (lowest published) | 21 ppm (guinea pig, 1 h) 12,330 ppm (mouse, 3 h) [4] |
NIOSH (US health exposure limits): | |
PEL (Permissible) | TWA 400 ppm (1400 mg/m3) [2] |
REL (Recommended) | TWA 400 ppm (1400 mg/m3) [2] |
IDLH (Immediate danger) | 2000 ppm [2] |
Related compounds | |
Related carboxylate esters | |
Related compounds | |
Supplementary data page | |
Ethyl acetate (data page) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Ethyl acetate (systematically ethyl ethanoate, commonly abbreviated EtOAc, ETAC or EA) is the organic compound with the formula CH3CO2CH2CH3, simplified to C4H8O2. This colorless liquid has a characteristic sweet smell (similar to pear drops) and is used in glues, nail polish removers, and the decaffeination process of tea and coffee. Ethyl acetate is the ester of ethanol and acetic acid; it is manufactured on a large scale for use as a solvent. [5]
Ethyl acetate was first synthesized by the Count de Lauraguais in 1759 by distilling a mixture of ethanol and acetic acid. [6]
In 2004, an estimated 1.3 million tonnes were produced worldwide. [5] [7] The combined annual production in 1985 of Japan, North America, and Europe was about 400,000 tonnes. The global ethyl acetate market was valued at $3.3 billion in 2018. [8]
Ethyl acetate is synthesized in industry mainly via the classic Fischer esterification reaction of ethanol and acetic acid. This mixture converts to the ester in about 65% yield at room temperature:
The reaction can be accelerated by acid catalysis and the equilibrium can be shifted to the right by removal of water.
It is also prepared in industry using the Tishchenko reaction, by combining two equivalents of acetaldehyde in the presence of an alkoxide catalyst:
Silicotungstic acid is used to manufacture ethyl acetate by the alkylation of acetic acid by ethylene: [9]
Ethyl acetate is used primarily as a solvent and diluent, being favored because of its low cost, low toxicity, and agreeable odor. [5] For example, it is commonly used to clean circuit boards and in some nail varnish removers (acetone is also used). Coffee beans and tea leaves are decaffeinated with this solvent. [10] It is also used in paints as an activator or hardener. Ethyl acetate is present in confectionery, perfumes, and fruits. In perfumes it evaporates quickly, leaving the scent of the perfume on the skin.
Ethyl acetate is an asphyxiant for use in insect collecting and study. [11] In a killing jar charged with ethyl acetate, the vapors will kill the collected insect quickly without destroying it. Because it is not hygroscopic, ethyl acetate also keeps the insect soft enough to allow proper mounting suitable for a collection. However, ethyl acetate is regarded as potentially doing damage to insect DNA, making specimens processed this way less than ideal for subsequent DNA sequencing. [12]
In the laboratory, mixtures containing ethyl acetate are commonly used in column chromatography and extractions. [13] Ethyl acetate is rarely selected as a reaction solvent because it is prone to hydrolysis, transesterification, and condensations.
Ethyl acetate is the most common ester in wine, being the product of the most common volatile organic acid – acetic acid, and the ethyl alcohol generated during the fermentation. The aroma of ethyl acetate is most vivid in younger wines and contributes towards the general perception of "fruitiness" in the wine. Sensitivity varies, with most people having a perception threshold around 120 mg/L. Excessive amounts of ethyl acetate are considered a wine fault.
Ethyl acetate is only weakly Lewis basic, like a typical carboxylic acid ester.
Ethyl acetate hydrolyses to give acetic acid and ethanol. Bases accelerate the hydrolysis, which is subject to the Fischer equilibrium mentioned above. In the laboratory, and usually for illustrative purposes only, ethyl esters are typically hydrolyzed in a two-step process starting with a stoichiometric amount of a strong base, such as sodium hydroxide. This reaction gives ethanol and sodium acetate, which is unreactive toward ethanol:
In the Claisen condensation, anhydrous ethyl acetate and strong bases react to give ethyl acetoacetate: [14]
Under normal conditions, ethyl acetate exists as a colorless, low-viscosity, and flammable liquid. Its melting point is -83 °C, with a melting enthalpy of 10.48 kJ·mol−1. At atmospheric pressure, the compound boils at 77 °C. The vaporization enthalpy at the boiling point is 31.94 kJ·mol−1. The vapor pressure function follows the Antoine equation:
where:
This function is valid within the temperature range of 289 K (16 °C) to 349 K (76 °C).
The enthalpy of vaporization in kJ/mol is calculated according to the empirical equation by Majer and Svoboda [15]
where:
Property | Type | Value | Remarks | References |
---|---|---|---|---|
Standard Enthalpy of Formation | -480.57 kJ·mol−1 -445.43 kJ·mol−1 | as liquid as gas | [16] | |
Standard Entropy | 259.4 J·mol−1·K−1 362.75 J·mol−1·K−1 | as liquid as gas | [17] [18] | |
Combustion Enthalpy | -2235.4 kJ·mol−1 | [19] | ||
Heat Capacity | 168.94 J·mol−1·K−1 (25 °C) 1.92 J·g−1·K−1 (25 °C) 113.64 J·mol−1·K−1 (25 °C) 1.29 J·g−1·K−1 (25 °C) | as liquid as gas | [20] [18] | |
Critical Temperature | 523.2 K | [15] | ||
Critical Pressure | 38.82 bar | [21] | ||
Critical Density | 3.497 mol·L−1 | [22] | ||
Acentric Factor | 0.36641 | [23] |
The table above summarizes the most important thermodynamic properties of ethyl acetate under various conditions.
The LD50 for rats is 5620 mg/kg, [24] indicating low acute toxicity. Given that the chemical is naturally present in many organisms, there is little risk of toxicity.
Overexposure to ethyl acetate may cause irritation of the eyes, nose, and throat. Severe overexposure may cause weakness, drowsiness, and unconsciousness. [25] Humans exposed to a concentration of 400 ppm in 1.4 mg/L ethyl acetate for a short time were affected by nose and throat irritation. [26] Ethyl acetate is an irritant of the conjunctiva and mucous membrane of the respiratory tract. Animal experiments have shown that, at very high concentrations, the ester has central nervous system depressant and lethal effects; at concentrations of 20,000 to 43,000 ppm (2.0–4.3%), there may be pulmonary edema with hemorrhages, symptoms of central nervous system depression, secondary anemia and liver damage. In humans, concentrations of 400 ppm cause irritation of the nose and pharynx; cases have also been known of irritation of the conjunctiva with temporary opacity of the cornea. In rare cases exposure may cause sensitization of the mucous membrane and eruptions of the skin. The irritant effect of ethyl acetate is weaker than that of propyl acetate or butyl acetate. [27]
Acetaldehyde (IUPAC systematic name ethanal) is an organic chemical compound with the formula CH3 CHO, sometimes abbreviated as MeCHO. It is a colorless liquid or gas, boiling near room temperature. It is one of the most important aldehydes, occurring widely in nature and being produced on a large scale in industry. Acetaldehyde occurs naturally in coffee, bread, and ripe fruit, and is produced by plants. It is also produced by the partial oxidation of ethanol by the liver enzyme alcohol dehydrogenase and is a contributing cause of hangover after alcohol consumption. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Consumption of disulfiram inhibits acetaldehyde dehydrogenase, the enzyme responsible for the metabolism of acetaldehyde, thereby causing it to build up in the body.
Diethyl ether, or simply ether, is an organic compound with the chemical formula (CH3CH2)2O, also written as C4H10O or (C2H5)2O, sometimes abbreviated as Et2O. It is a colourless, highly volatile, sweet-smelling, extremely flammable liquid. It belongs to the ether class of organic compounds. It is commonly used as a solvent in laboratories and as a starting fluid for some engines. It was formerly used as a general anesthetic, until non-flammable drugs were developed, such as halothane. It has been used as a recreational drug to cause intoxication.
Methyl acetate, also known as MeOAc, acetic acid methyl ester or methyl ethanoate, is a carboxylate ester with the formula CH3COOCH3. It is a flammable liquid with a characteristically pleasant smell reminiscent of some glues and nail polish removers. Methyl acetate is occasionally used as a solvent, being weakly polar and lipophilic, but its close relative ethyl acetate is a more common solvent being less toxic and less soluble in water. Methyl acetate has a solubility of 25% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or aqueous acids. Methyl acetate is not considered a VOC in the USA.
Acetic anhydride, or ethanoic anhydride, is the chemical compound with the formula (CH3CO)2O. Commonly abbreviated Ac2O, it is the simplest isolable anhydride of a carboxylic acid and is widely used as a reagent in organic synthesis. It is a colorless liquid that smells strongly of acetic acid, which is formed by its reaction with moisture in the air.
Amyl acetate (pentyl acetate) is an organic compound and an ester with the chemical formula CH3COO[CH2]4CH3 and the molecular weight 130.19 g/mol. It is colorless and has a scent similar to bananas and apples. The compound is the condensation product of acetic acid and 1-pentanol. However, esters formed from other pentanol isomers (amyl alcohols), or mixtures of pentanols, are often referred to as amyl acetate. The symptoms of exposure to amyl acetate in humans are dermatitis, central nervous system depression, narcosis and irritation to the eyes and nose.
Dimethylacetamide (DMAc or DMA) is the organic compound with the formula CH3C(O)N(CH3)2. This colorless, water-miscible, high-boiling liquid is commonly used as a polar solvent in organic synthesis. DMA is miscible with most other solvents, although it is poorly soluble in aliphatic hydrocarbons.
Dimethylamine is an organic compound with the formula (CH3)2NH. This secondary amine is a colorless, flammable gas with an ammonia-like odor. Dimethylamine is commonly encountered commercially as a solution in water at concentrations up to around 40%. An estimated 270,000 tons were produced in 2005.
Bromoethane, also known as ethyl bromide, is a chemical compound of the haloalkanes group. It is abbreviated by chemists as EtBr. This volatile compound has an ether-like odor.
The organic compound ethyl acetoacetate (EAA) is the ethyl ester of acetoacetic acid. It is a colorless liquid. It is widely used as a chemical intermediate in the production of a wide variety of compounds.
n-Butyl acetate is an organic compound with the formula CH3CO2(CH2)3CH3. A colorless, flammable liquid, it is the ester derived from n-butanol and acetic acid. It is found in many types of fruit, where it imparts characteristic flavors and has a sweet smell of banana or apple. It is used as an industrial solvent.
The chemical compound isobutyl acetate, also known as 2-methylpropyl ethanoate or β-methylpropyl acetate, is a common solvent. It is produced from the esterification of isobutanol with acetic acid. It is used as a solvent for lacquer and nitrocellulose. Like many esters it has a fruity or floral smell at low concentrations and occurs naturally in raspberries, pears and other plants. At higher concentrations the odor can be unpleasant and may cause symptoms of central nervous system depression such as nausea, dizziness and headache.
Propyl acetate, also known as propyl ethanoate, is an organic compound. Nearly 20,000 tons are produced annually for use as a solvent. This colorless liquid is known by its characteristic odor of pears. Due to this fact, it is commonly used in fragrances and as a flavor additive. It is formed by the esterification of acetic acid and propan-1-ol, often via Fischer–Speier esterification, with sulfuric acid as a catalyst and water produced as a byproduct.
1-Propanol is a primary alcohol with the formula CH3CH2CH2OH and sometimes represented as PrOH or n-PrOH. It is a colourless, water-miscible liquid. It is an isomer of 2-propanol. 1-Propanol is used as a solvent.
Isopropyl acetate is an ester, an organic compound which is the product of esterification of acetic acid and isopropanol. It is a clear, colorless liquid with a characteristic fruity odor.
sec-Butyl acetate, or s-butyl acetate, is an ester commonly used as a solvent in lacquers and enamels, where it is used in the production of acyclic polymers, vinyl resins, and nitrocellulose. It is a clear flammable liquid with a sweet smell.
Isoamyl acetate, also known as isopentyl acetate, is an ester formed from isoamyl alcohol and acetic acid, with the molecular formula C7H14O2. It is a colorless liquid that is only slightly soluble in water, but very soluble in most organic solvents. Isoamyl acetate has a strong odor which is described as similar to both banana and pear. Pure isoamyl acetate, or mixtures of isoamyl acetate, amyl acetate, and other flavors in ethanol may be referred to as banana oil or pear oil.
1-Butanol, also known as butan-1-ol or n-butanol, is a primary alcohol with the chemical formula C4H9OH and a linear structure. Isomers of 1-butanol are isobutanol, butan-2-ol and tert-butanol. The unmodified term butanol usually refers to the straight chain isomer.
In organic chemistry, ethenone is the formal name for ketene, an organic compound with formula C2H2O or H2C=C=O. It is the simplest member of the ketene class. It is an important reagent for acetylations.
Acetic acid, systematically named ethanoic acid, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH. Vinegar is at least 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water. It has been used, as a component of vinegar, throughout history from at least the third century BC.
Isopropyl alcohol is a colorless, flammable organic compound with a pungent alcoholic odor.