Transition metal imido complex

Last updated
Structure of a representative imido complex (py = pyridine, CMe3 = tert-butyl) TiImide.png
Structure of a representative imido complex (py = pyridine, CMe3 = tert-butyl)

In coordination chemistry and organometallic chemistry, transition metal imido complexes is a coordination compound containing an imido ligand. Imido ligands can be terminal or bridging ligands. The parent imido ligand has the formula NH, but most imido ligands have alkyl or aryl groups in place of H. The imido ligand is generally viewed as a dianion, akin to oxide.

Contents

Structural classes

Core of W(NAr)2(N(H)Ar)2 (Ar = C6H3-2,6-iPr2). Metrics of amido vs imido ligands.svg
Core of W(NAr)2(N(H)Ar)2 (Ar = C6H3-2,6-iPr2).

Complexes with terminal imido ligands

In some terminal imido complexes, the M=N−C angle is 180° but often the angle is decidedly bent. Complexes of the type M=NH are assumed to be intermediates in nitrogen fixation by synthetic catalysts. [3]

Typical Schrock-style olefin metathesis catalyst features imides as spectator ligands. SchrockCatalyst.svg
Typical Schrock-style olefin metathesis catalyst features imides as spectator ligands.

Complexes with bridging imido ligands

Imido ligands are observed as doubly and, less often, triply bridging ligands.

Synthesis

From metal oxo complexes

Commonly metal-imido complexes are generated from metal oxo complexes. They arise by condensation of amines and metal oxides and metal halides:

LnMO + H2NR → LnMNR + H2O

This approach is illustrated by the conversion of MoO2Cl2 to the diimido derivative MoCl2(NAr)2(dimethoxyethane), precursors to the Schrock carbenes of the type Mo(OR)2(NAr)(CH-t-Bu). [4]

LnMCl2 + 3 H2NR → LnMNR + 2 RNH3Cl

Aryl isocyanates react with metal oxides concomitant with decarboxylation:

LnMO + O=C=NR → LnMNR + CO2
Structure of OsO3(N-t-Bu) (multiple bonds are not drawn explicitly). Selected distances: Os-N, 1.689; Os-O, 1.678 A. CSD CIF KEWMEE.png
Structure of OsO3(N-t-Bu) (multiple bonds are not drawn explicitly). Selected distances: Os-N, 1.689; Os-O, 1.678 Å.

Alternative routes

Some are generated from the reaction of low-valence metal complexes with azides:

LnM + N3R → LnMNR + N2

A few imido complexes have been generated by the alkylation of metal nitride complexes:

LnMN + RX → LnMNR + X

Utility

Metal imido complexes are mainly of academic interest. They are however assumed to be intermediates in ammoxidation catalysis, in the Sharpless oxyamination, and in nitrogen fixation.

In nitrogen fixation

A molybdenum imido complex appears in a common nitrogen fixation cycle:

Mo•N2 Mo-N=NMo-N=NH (diazenido) →Mo-N=NH2+Mo=N-NH2 (hydrazido) →Mo=N-NH3+ (hydrazidium) →Mo≡N (nitrido) + NH3Mo≡NH+Mo=NH (imido) →Mo=NH2+Mo-NH2 (amido) →Mo-NH3+ Mo•NH3 (ammine);

with the oxidation state of molybdenum varying to accommodate the number bonds from nitrogen. [6]

Related Research Articles

<span class="mw-page-title-main">Oxide</span> Chemical compound where oxygen atoms are combined with atoms of other elements

An oxide is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 that protects the foil from further oxidation.

<span class="mw-page-title-main">Osmium tetroxide</span> Chemical compound

Osmium tetroxide (also osmium(VIII) oxide) is the chemical compound with the formula OsO4. The compound is noteworthy for its many uses, despite its toxicity and the rarity of osmium. It also has a number of unusual properties, one being that the solid is volatile. The compound is colourless, but most samples appear yellow. This is most likely due to the presence of the impurity OsO2, which is yellow-brown in colour. In biology, its property of binding to lipids has made it a widely-used stain in electron microscopy.

<span class="mw-page-title-main">Imide</span> Class of chemical compounds

In organic chemistry, an imide is a functional group consisting of two acyl groups bound to nitrogen. The compounds are structurally related to acid anhydrides, although imides are more resistant to hydrolysis. In terms of commercial applications, imides are best known as components of high-strength polymers, called polyimides. Inorganic imides are also known as solid state or gaseous compounds, and the imido group (=NH) can also act as a ligand.

<span class="mw-page-title-main">Nitrogenase</span> Class of enzymes

Nitrogenases are enzymes (EC 1.18.6.1EC 1.19.6.1) that are produced by certain bacteria, such as cyanobacteria (blue-green bacteria) and rhizobacteria. These enzymes are responsible for the reduction of nitrogen (N2) to ammonia (NH3). Nitrogenases are the only family of enzymes known to catalyze this reaction, which is a step in the process of nitrogen fixation. Nitrogen fixation is required for all forms of life, with nitrogen being essential for the biosynthesis of molecules (nucleotides, amino acids) that create plants, animals and other organisms. They are encoded by the Nif genes or homologs. They are related to protochlorophyllide reductase.

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

Osmium compounds are compounds containing the element osmium (Os). Osmium forms compounds with oxidation states ranging from −2 to +8. The most common oxidation states are +2, +3, +4, and +8. The +8 oxidation state is notable for being the highest attained by any chemical element aside from iridium's +9 and is encountered only in xenon, ruthenium, hassium, iridium, and plutonium. The oxidation states −1 and −2 represented by the two reactive compounds Na
2
[Os
4
(CO)
13
]
and Na
2
[Os(CO)
4
]
are used in the synthesis of osmium cluster compounds.

<span class="mw-page-title-main">Metal nitrosyl complex</span> Complex of a transition metal bonded to nitric oxide: Me–NO

Metal nitrosyl complexes are complexes that contain nitric oxide, NO, bonded to a transition metal. Many kinds of nitrosyl complexes are known, which vary both in structure and coligand.

<span class="mw-page-title-main">Transition metal dinitrogen complex</span> Coordination compounds with N2

Transition metal dinitrogen complexes are coordination compounds that contain transition metals as ion centers the dinitrogen molecules (N2) as ligands.

<span class="mw-page-title-main">Metal–ligand multiple bond</span> Chemical interaction of certain ligands with metals of bond order >1

In organometallic chemistry, a metal–ligand multiple bond describes the interaction of certain ligands with a metal with a bond order greater than one. Coordination complexes featuring multiply bonded ligands are of both scholarly and practical interest. Transition metal carbene complexes catalyze the olefin metathesis reaction. Metal oxo intermediates are pervasive in oxidation catalysis.

<span class="mw-page-title-main">Organomolybdenum chemistry</span> Chemistry of compounds with Mo-C bonds

Organomolybdenum chemistry is the chemistry of chemical compounds with Mo-C bonds. The heavier group 6 elements molybdenum and tungsten form organometallic compounds similar to those in organochromium chemistry but higher oxidation states tend to be more common.

Metal nitrido complexes are coordination compounds and metal clusters that contain an atom of nitrogen bound only to transition metals. These compounds are molecular, i.e. discrete in contrast to the polymeric, dense nitride materials that are useful in materials science. The distinction between the molecular and solid-state polymers is not always very clear as illustrated by the materials Li6MoN4 and more condensed derivatives such as Na3MoN3. Transition metal nitrido complexes have attracted interest in part because it is assumed that nitrogen fixation proceeds via nitrido intermediates. Nitrido complexes have long been known, the first example being salts of [OsO3N], described in the 19th century.

Transition metal carbyne complexes are organometallic compounds with a triple bond between carbon and the transition metal. This triple bond consists of a σ-bond and two π-bonds. The HOMO of the carbyne ligand interacts with the LUMO of the metal to create the σ-bond. The two π-bonds are formed when the two HOMO orbitals of the metal back-donate to the LUMO of the carbyne. They are also called metal alkylidynes—the carbon is a carbyne ligand. Such compounds are useful in organic synthesis of alkynes and nitriles. They have been the focus on much fundamental research.

<span class="mw-page-title-main">Metal amides</span>

Metal amides (systematic name metal azanides) are a class of coordination compounds composed of a metal center with amide ligands of the form NR2. Amido complexes of the parent amido ligand NH2 are rare compared to complexes with diorganylamido ligand, such as dimethylamido. Amide ligands have two electron pairs available for bonding.

Phosphinoimidates, also known as phophinimides, are the anions derived from phosphine imides with the structure [R3P=N] (R = alkyl or aryl). Phosphinimide ligands are used to for transition metal complexes that are highly active catalysts in some olefin polymerization reactions.

Diiminopyridines are a class of diimine ligands. They featuring a pyridine nucleus with imine sidearms appended to the 2,6–positions. The three nitrogen centres bind metals in a tridentate fashion, forming pincer complexes. Diiminopyridines are notable as non-innocent ligand that can assume more than one oxidation state. Complexes of DIPs participate in a range of chemical reactions, including ethylene polymerization, hydrosilylation, and hydrogenation.

<span class="mw-page-title-main">Bis(dinitrogen)bis(1,2-bis(diphenylphosphino)ethane)molybdenum(0)</span> Chemical compound

trans-Bis(dinitrogen)bis[1,2-bis(diphenylphosphino)ethane]molybdenum(0) is a coordination complex with the formula Mo(N2)2(dppe)2. It is a relatively air stable yellow-orange solid. It is notable as being the first discovered dinitrogen containing complex of molybdenum.

<span class="mw-page-title-main">2,6-Diisopropylaniline</span> Chemical compound

2,6-Diisopropylaniline is an organic compound with the formula H2NC6H3(CHMe2)2 (Me = CH3). It is a colorless liquid although, like many anilines, samples can appear yellow or brown. 2,6-Diisopropylaniline is a bulky aromatic amine that is often used to make ligands in coordination chemistry. The Schrock carbenes often are transition metal imido complexes derived from this aniline. Condensation with diacetylpyridine and acetylacetone gives, respectively, diiminopyridine and NacNac ligands.

The inorganic imides are compounds containing an ion composed of nitrogen bonded to hydrogen with formula HN2−. Organic imides have the NH group, and two single or one double covalent bond to other atoms. The imides are related to the inorganic amides (H2N), the nitrides (N3−) and the nitridohydrides (N3−•H).

<span class="mw-page-title-main">Abiological nitrogen fixation using homogeneous catalysts</span> Chemical process that converts nitrogen to ammonia

Abiological nitrogen fixation describes chemical processes that fix (react with) N2, usually with the goal of generating ammonia. The dominant technology for abiological nitrogen fixation is the Haber process, which uses an iron-based heterogeneous catalysts and H2 to convert N2 to NH3. This article focuses on homogeneous (soluble) catalysts for the same or similar conversions.

<span class="mw-page-title-main">Transition metal nitrite complex</span> Chemical complexes containing one or more –NO₂ ligands

In organometallic chemistry, transition metal complexes of nitrite describes families of coordination complexes containing one or more nitrite ligands. Although the synthetic derivatives are only of scholarly interest, metal-nitrite complexes occur in several enzymes that participate in the nitrogen cycle.

References

  1. Hazari, N.; Mountford, P., "Reactions and Applications of Titanium Imido Complexes", Acc. Chem. Res. 2005, 38, 839-849. doi : 10.1021/ar030244z
  2. Tianniu Chen; K.R . Sorasaenee; Zhongzhi Wu; J. B. Diminnie; Ziling Xue (2003). "Synthesis, Characterization and X-ray Structures of New Molybdenum Bis(imide) Amide and Silyl Complexes". Inorg. Chim. Acta. 345: 113. doi:10.1016/S0020-1693(02)01271-9.
  3. Nugent, W. A.; Mayer, J. M., "Metal-Ligand Multiple Bonds," J. Wiley: New York, 1988.
  4. Schrock, R. R. (2009). "Recent Advances in High Oxidation State Mo and W Imido Alkylidene Chemistry". Chemical Reviews. 109 (8): 3211–3226. doi:10.1021/cr800502p. PMC   2726908 . PMID   19284732.
  5. Brian S. McGilligan; John Arnold; Geoffrey Wilkinson; Bilquis Hussain-Bates; Michael B. Hursthouse (1990). "Reactions of Dimesityldioxo-Osmium(VI) with Donor Ligands; Reactions of MO2(2,4,6-Me3C6H2)2, M = Os or Re, with Nitrogen Oxides. X-Ray Crystal Structures of [2,4,6-Me3C6H2N2]+[OsO2(ONO2)2(2,4,6-Me3C6H2)], OsO(NBut)(2,4,6-Me3C6H2)2, OsO3(NBut), and ReO3[N(2,4,6-Me3C6H2)2]". J. Chem. Soc., Dalton Trans. (8): 2465–2475. doi:10.1039/DT9900002465.
  6. Stringer, Damien (July 2009). Synthetic and Theoretical Studies of Lanthanide Imide and Alkene Complexes (PDF) (Thesis). University of Tasmania. Retrieved 10 November 2020.