Transition metal complexes of pyridine-N-oxides

Last updated
Structure of
.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}
[Ni(ONC5H5)6]. CSD CIF PYNONI01.jpg
Structure of [Ni(ONC5H5)6].

Transition metal complexes of pyridine-N-oxides encompass coordination complexes that contain pyridine-N-oxides as ligands. Particularly common are the octahedral homoleptic complexes of the type [M(ONC5H5)6]2+ where M = Mn(II), Fe(II), Co(II), Ni(II). [2] Many variations of pyridine N-oxide are known, such as the dioxides of 2,2'- and 4,4'-2,2'-bipyridine. [3] Complexes derived from the trioxide of terpyridine have been crystallized as well. [4]

Contents

Structure and bonding

Pyridine-N-oxides bind to metals through the oxygen. According to X-ray crystallography, the M-O-N angle is approximately 130° in many of these complexes. As reflected by the pKa of 0.79 for C5H5NOH+, pyridine N-oxides are weakly basic ligands. Their complexes are generally high spin, hence they are kinetically labile.

Applications

Structure of zinc pyrithione, a popular antidandruff medicine. Zink-Pyrithion.svg
Structure of zinc pyrithione, a popular antidandruff medicine.

Zinc pyrithione is a coordination complex of a sulfur-substituted pyridine-N-oxide. This zinc complex has useful fungistatic and bacteriostatic properties.. [5]

Related Research Articles

<span class="mw-page-title-main">Bipyridine</span> Group of chemical compounds

Bipyridines are a family of organic compounds with the formula (C5H4N)2, consisting of two pyridyl (C5H4N) rings. Pyridine is an aromatic nitrogen-containing heterocycle. The bipyridines are all colourless solids, which are soluble in organic solvents and slightly soluble in water. Bipyridines, especially the 4,4' isomer, are mainly of significance in pesticides.

<span class="mw-page-title-main">Terpyridine</span> Chemical compound

Terpyridine is a heterocyclic compound derived from pyridine. It is a white solid that is soluble in most organic solvents. The compound is mainly used as a ligand in coordination chemistry.

<span class="mw-page-title-main">Coordination polymer</span> Polymer consisting of repeating units of a coordination complex

A coordination polymer is an inorganic or organometallic polymer structure containing metal cation centers linked by ligands. More formally a coordination polymer is a coordination compound with repeating coordination entities extending in 1, 2, or 3 dimensions.

<span class="mw-page-title-main">2,2′-Bipyridine</span> Chemical compound

2,2′-Bipyridine (bipy or bpy, pronounced ) is an organic compound with the formula C10H8N2. This colorless solid is an important isomer of the bipyridine family. It is a bidentate chelating ligand, forming complexes with many transition metals. Ruthenium and platinum complexes of bipy exhibit intense luminescence, which may have practical applications.

In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central ion/molecule/atom is called a ligand. This number is determined somewhat differently for molecules than for crystals.

In chemistry, a (redox) non-innocent ligand is a ligand in a metal complex where the oxidation state is not clear. Typically, complexes containing non-innocent ligands are redox active at mild potentials. The concept assumes that redox reactions in metal complexes are either metal or ligand localized, which is a simplification, albeit a useful one.

<span class="mw-page-title-main">4,4'-Bipyridine</span> Chemical compound

4,4′-Bipyridine (abbreviated to 4,4′-bipy or 4,4′-bpy) is an organic compound with the formula (C5H4N)2. It is one of several isomers of bipyridine. It is a colorless solid that is soluble in organic solvents. is mainly used as a precursor to N,N′-dimethyl-4,4′-bipyridinium [(C5H4NCH3)2]2+, known as paraquat.

Pyridine-<i>N</i>-oxide Chemical compound

Pyridine-N-oxide is the heterocyclic compound with the formula C5H5NO. This colourless, hygroscopic solid is the product of the oxidation of pyridine. It was originally prepared using peroxyacids as the oxidising agent. The compound is used infrequently as an oxidizing reagent in organic synthesis.

<span class="mw-page-title-main">BTBP</span> A class of tetradentate ligand compounds

The bis-triazinyl bipyridines (BTBPs) are a class of chemical compounds which are tetradentate ligands similar in shape to quaterpyridine. The BTBPs are made by the reaction of hydrazine and a 1,2-diketone with 6,6'-dicyano-2,2'-bipyridine. The dicyanobipy can be made by reacting 2,2'-bipy with hydrogen peroxide in acetic acid, to form 2,2'-bipyridine-N,N-dioxide. The 2,2'-bipyridine-N,N-dioxide is then converted into the dicyano compound by treatment with potassium cyanide and benzoyl chloride in a mixture of water and THF.

<span class="mw-page-title-main">Transition-metal allyl complex</span>

Transition-metal allyl complexes are coordination complexes with allyl and its derivatives as ligands. Allyl is the radical with the connectivity CH2CHCH2, although as a ligand it is usually viewed as an allyl anion CH2=CH−CH2, which is usually described as two equivalent resonance structures.

<span class="mw-page-title-main">Transition metal nitrile complexes</span> Class of coordination compounds containing nitrile ligands (coordinating via N)

Transition metal nitrile complexes are coordination compounds containing nitrile ligands. Because nitriles are weakly basic, the nitrile ligands in these complexes are often labile.

<i>cis</i>-Dichlorobis(bipyridine)ruthenium(II) Chemical compound

cis-Dichlorobis(bipyridine)ruthenium(II) is the coordination complex with the formula RuCl2(bipy)2, where bipy is 2,2'-bipyridine. It is a dark green diamagnetic solid that is a precursor to many other complexes of ruthenium, mainly by substitution of the two chloride ligands. The compound has been crystallized as diverse hydrates.

<span class="mw-page-title-main">Transition metal pyridine complexes</span>

Transition metal pyridine complexes encompass many coordination complexes that contain pyridine as a ligand. Most examples are mixed-ligand complexes. Many variants of pyridine are also known to coordinate to metal ions, such as the methylpyridines, quinolines, and more complex rings.

<span class="mw-page-title-main">Transition metal isocyanide complexes</span> Class of chemical compounds

Transition metal isocyanide complexes are coordination compounds containing isocyanide ligands. Because isocyanides are relatively basic, but also good pi-acceptors, a wide range of complexes are known. Some isocyanide complexes are used in medical imaging.

Gallium monoiodide is an inorganic gallium compound with the formula GaI or Ga4I4. It is a pale green solid and mixed valent gallium compound, which can contain gallium in the 0, +1, +2, and +3 oxidation states. It is used as a pathway for many gallium-based products. Unlike the gallium(I) halides first crystallographically characterized, gallium monoiodide has a more facile synthesis allowing a synthetic route to many low-valent gallium compounds.

<span class="mw-page-title-main">Transition metal dithiocarbamate complexes</span>

Transition metal dithiocarbamate complexes are coordination complexes containing one or more dithiocarbamate ligand, which are typically abbreviated R2dtc. Many complexes are known. Several homoleptic derivatives have the formula M(R2dtc)n where n = 2 and 3.

<span class="mw-page-title-main">Transition metal nitrite complex</span> Chemical complexes containing one or more –NO₂ ligands

In organometallic chemistry, transition metal complexes of nitrite describes families of coordination complexes containing one or more nitrite ligands. Although the synthetic derivatives are only of scholarly interest, metal-nitrite complexes occur in several enzymes that participate in the nitrogen cycle.

<span class="mw-page-title-main">Transition metal nitrate complex</span> Compound of nitrate ligands

A transition metal nitrate complex is a coordination compound containing one or more nitrate ligands. Such complexes are common starting reagents for the preparation of other compounds.

Transition metal complexes of 2,2'-bipyridine are coordination complexes containing one or more 2,2'-bipyridine ligands. Complexes have been described for all of the transition metals. Although few have any practical value, these complexes have been influential. 2,2'-Bipyridine is classified as a diimine ligand. Unlike the structures of pyridine complexes, the two rings in bipy are coplanar, which facilitates electron delocalization. As a consequence of this delocalization, bipy complexes often exhibit distinctive optical and redox properties.

<span class="mw-page-title-main">Transition metal carbonate and bicarbonate complexes</span>

Transition metal carbonate and bicarbonate complexes are coordination compounds containing carbonate (CO32-) and bicarbonate (HCO3-) as ligands. The inventory of complexes is large, enhanced by the fact that the carbonate ligand can bind metal ions in a variety of bonding modes.

References

  1. Van Ingen Schenau, A. D.; Verschoor, C. G.; Romers, C. (1974). "The Crystal and Molecular Structure of Hexakis(pyridine-N-oxide)nickel(II) Bis(tetrafluoroborate)". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 30 (7): 1686–1694. doi:10.1107/S0567740874005632.
  2. Carlin, Richard L.; De Jongh, L. J. (1986). "Structural and Magnetic Properties of Transition Metal complexes of Pyridine N-Oxide". Chemical Reviews. 86 (4): 659–680. doi: 10.1021/cr00074a001 .
  3. Jia, Junhua; Hubberstey, Peter; Champness, Neil R.; Schröder, Martin (2009). "Supramolecular Chemistry of 4,4′-Bipyridine-N,N′-dioxide in Transition Metal Complexes: A Rich Diversity of Co-ordinate, Hydrogen-Bond and Aromatic Stacking Interactions". Molecular Networks. Structure and Bonding. Vol. 132. pp. 135–161. doi:10.1007/430_2008_9. ISBN   978-3-642-01366-9.
  4. Amoroso, Angelo J.; Burrows, Miles W.; Dickinson, Anthony A.; Jones, Cameron; Willock, David J.; Wong, Wing-Tak (2001). "Geometrical preferences of complexes of terpyridine N-oxide ligands: Synthesis and crystal structures of nickel(II) with terpyridine 1,1′,1″-trioxide, terpyridine 1,1″-dioxide and terpyridine 1-oxide". Journal of the Chemical Society, Dalton Transactions (3): 225–227. doi:10.1039/b008993l.
  5. Barnett, B. L.; Kretschmar, H. C.; Hartman, F. A. (1977). "Structural characterization of bis(N-oxopyridine-2-thionato)zinc(II)". Inorg. Chem. 16 (8): 1834–8. doi:10.1021/ic50174a002.