Transition metal phosphate complex

Last updated
Some bonding modes in phosphate complexes. Phosphate-M bonding modes.svg
Some bonding modes in phosphate complexes.

Transition metal phosphate complexes are coordination complexes with one or more phosphate ligands. Phosphate binds to metals through one, two, three, or all four oxygen atoms. The bidentate coordination mode is common. The second and third pKa's of phosphoric acid, pKa2 and pKa3, are 7.2 and 12.37, respectively. It follows that HPO2−4 and PO3−4 are sufficiently basic to serve as ligands. The examples below confirm this expectation. Molecular metal phosphate complexes have no or few applications.

Contents

Examples

Other transition metal phosphates

Aside from molecular metal phosphate complexes, the topic of this article, many or most transition metal phosphates are nonmolecular, being coordination polymers or dense ternary or quaternary phases. Iron(III) phosphate, contemplated as a cathode material for batteries, is one example. Vanadyl phosphate (VOPO4(H2O)) is a commercial catalyst for oxidation reactions. Many metal phosphates occur as minerals.

Di- and polyphosphates

Phosphates exist in many condensed oligomeric forms. Many of these derivatives function as ligands for metal ions. Pyrophosphate (P2O4−7) [7] and trimetaphosphate ([P3O9]3−) have been particularly studied. They typically function as bi- and tridentate ligands.

Structure of
[(C6H6)Ru(P3O9)]. Color code: red = O, violet = P, blue = Ru, gray = C. CSD CIF JIYFAZ.png
Structure of [(C6H6)Ru(P3O9)]. Color code: red = O, violet = P, blue = Ru, gray = C.

Related Research Articles

<span class="mw-page-title-main">Ligand</span> Ion or molecule that binds to a central metal atom to form a coordination complex

In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electron pairs, often through Lewis bases. The nature of metal–ligand bonding can range from covalent to ionic. Furthermore, the metal–ligand bond order can range from one to three. Ligands are viewed as Lewis bases, although rare cases are known to involve Lewis acidic "ligands".

<span class="mw-page-title-main">Cyanate</span> Anion with formula OCN and charge –1

The cyanate ion is an anion with the chemical formula OCN. It is a resonance of three forms: [O−C≡N] (61%) ↔ [O=C=N] (30%) ↔ [O+≡C−N2−] (4%).

<span class="mw-page-title-main">Gadolinium(III) chloride</span> Chemical compound

Gadolinium(III) chloride, also known as gadolinium trichloride, is GdCl3. It is a colorless, hygroscopic, water-soluble solid. The hexahydrate GdCl3∙6H2O is commonly encountered and is sometimes also called gadolinium trichloride. Gd3+ species are of special interest because the ion has the maximum number of unpaired spins possible, at least for known elements. With seven valence electrons and seven available f-orbitals, all seven electrons are unpaired and symmetrically arranged around the metal. The high magnetism and high symmetry combine to make Gd3+ a useful component in NMR spectroscopy and MRI.

The uranyl ion is an oxycation of uranium in the oxidation state +6, with the chemical formula UO2+
2
. It has a linear structure with short U–O bonds, indicative of the presence of multiple bonds between uranium and oxygen. Four or more ligands may be bound to the uranyl ion in an equatorial plane around the uranium atom. The uranyl ion forms many complexes, particularly with ligands that have oxygen donor atoms. Complexes of the uranyl ion are important in the extraction of uranium from its ores and in nuclear fuel reprocessing.

<span class="mw-page-title-main">Uranium borohydride</span> Chemical compound

Uranium borohydride is the inorganic compound with the empirical formula U(BH4)4. Two polymeric forms are known, as well as a monomeric derivative that exists in the gas phase. Because the polymers convert to the gaseous form at mild temperatures, uranium borohydride once attracted much attention. It is solid green.

<span class="mw-page-title-main">1,2-Bis(dimethylarsino)benzene</span> Chemical compound

1,2-Bis(dimethylarsino)benzene (diars) is the organoarsenic compound with the formula C6H4(As(CH3)2)2. The molecule consists of two dimethylarsino groups attached to adjacent carbon centers of a benzene ring. It is a chelating ligand in coordination chemistry. This colourless oil is commonly abbreviated "diars."

<span class="mw-page-title-main">Diphosphine ligands</span>

Diphosphines, sometimes called bisphosphanes, are organophosphorus compounds most commonly used as bidentate phosphine ligands in inorganic and organometallic chemistry. They are identified by the presence of two phosphino groups linked by a backbone, and are usually chelating. A wide variety of diphosphines have been synthesized with different linkers and R-groups. Alteration of the linker and R-groups alters the electronic and steric properties of the ligands which can result in different coordination geometries and catalytic behavior in homogeneous catalysts.

<span class="mw-page-title-main">PMDTA</span> Chemical compound

PMDTA (N,N,N,N,N-pentamethyldiethylenetriamine) is an organic compound with the formula [(CH3)2NCH2CH2]2NCH3. PMDTA is a basic, bulky, and flexible, tridentate ligand that is a used in organolithium chemistry. It is a colorless liquid, although impure samples appear yellowish.

<span class="mw-page-title-main">Denticity</span> Number of atoms in a ligand that bond to the central atom of a coordination complex

In coordination chemistry, denticity refers to the number of donor groups in a given ligand that bind to the central metal atom in a coordination complex. In many cases, only one atom in the ligand binds to the metal, so the denticity equals one, and the ligand is said to be unidentate or monodentate. Ligands with more than one bonded atom are called multidentate or polydentate. The denticity of a ligand is described with the Greek letter κ ('kappa'). For example, κ6-EDTA describes an EDTA ligand that coordinates through 6 non-contiguous atoms.

<span class="mw-page-title-main">Iminodiacetic acid</span> Chemical compound

Iminodiacetic acid is the organic compound with the formula HN(CH2CO2H)2, often abbreviated to IDA. A white solid, the compound is a dicarboxylic acid amine (the nitrogen atom forms a secondary amino group, not an imino group as the name suggests). The iminodiacetate dianion is a tridentate ligand, forming metal complexes by forming two, fused, five membered chelate rings. The proton on the nitrogen atom can be replaced by a carbon atom of a polymer to create an ion-exchange resin, such as chelex 100. Complexes of IDA and EDTA were introduced in the early 1950s by Schwarzenbach.

<span class="mw-page-title-main">Metal-phosphine complex</span>

A metal-phosphine complex is a coordination complex containing one or more phosphine ligands. Almost always, the phosphine is an organophosphine of the type R3P (R = alkyl, aryl). Metal phosphine complexes are useful in homogeneous catalysis. Prominent examples of metal phosphine complexes include Wilkinson's catalyst (Rh(PPh3)3Cl), Grubbs' catalyst, and tetrakis(triphenylphosphine)palladium(0).

<span class="mw-page-title-main">Cobalt(III) nitrate</span> Chemical compound

Cobalt(III) nitrate is an inorganic compound with the chemical formula Co(NO3)3. It is a green, diamagnetic solid that sublimes at ambient temperature.

Transition metal amino acid complexes are a large family of coordination complexes containing the conjugate bases of the amino acids, the 2-aminocarboxylates. Amino acids are prevalent in nature, and all of them function as ligands toward the transition metals. Not included in this article are complexes of the amides and ester derivatives of amino acids. Also excluded are the polyamino acids including the chelating agents EDTA and NTA.

<span class="mw-page-title-main">Bispidine</span> Chemical compound

Bispidine (3,7-diazabicyclo[3.3.1]nonane) is an organic compound that is classified as a bicyclic diamine. Although synthetic, it is related structurally to natural alkaloid sparteine. It is a white crystalline solid. It has been widely investigated as a chelating agent. Many derivatives are known.

<span class="mw-page-title-main">Transition metal thioether complex</span>

Transition metal thioether complexes comprise coordination complexes of thioether (R2S) ligands. The inventory is extensive.

<span class="mw-page-title-main">Transition metal carboxylate complex</span> Class of chemical compounds

Transition metal carboxylate complexes are coordination complexes with carboxylate (RCO2) ligands. Reflecting the diversity of carboxylic acids, the inventory of metal carboxylates is large. Many are useful commercially, and many have attracted intense scholarly scrutiny. Carboxylates exhibit a variety of coordination modes, most common are κ1- (O-monodentate), κ2 (O,O-bidentate), and bridging.

<span class="mw-page-title-main">Transition metal nitrite complex</span> Chemical complexes containing one or more –NO₂ ligands

In organometallic chemistry, transition metal complexes of nitrite describes families of coordination complexes containing one or more nitrite ligands. Although the synthetic derivatives are only of scholarly interest, metal-nitrite complexes occur in several enzymes that participate in the nitrogen cycle.

<span class="mw-page-title-main">Transition metal oxalate complex</span>

Transition metal oxalate complexes are coordination complexes with oxalate (C2O42−) ligands. Some are useful commercially, but the topic has attracted regular scholarly scrutiny. Oxalate (C2O42-) is a kind of dicarboxylate ligand. As a small, symmetrical dinegative ion, oxalate commonly forms five-membered MO2C2 chelate rings. Mixed ligand complexes are known, e.g., [Co(C2O4)(NH3)4]κ+.

<span class="mw-page-title-main">Transition metal carbonate and bicarbonate complexes</span>

Transition metal carbonate and bicarbonate complexes are coordination compounds containing carbonate (CO32-) and bicarbonate (HCO3-) as ligands. The inventory of complexes is large, enhanced by the fact that the carbonate ligand can bind metal ions in a variety of bonding modes. They illustrate the fate of low valent complexes when exposed to air.

<span class="mw-page-title-main">Transition metal sulfate complex</span> Coordination complexes with one or more sulfate ligands

Transition metal sulfate complexes or sulfato complexes are coordination complexes with one or more sulfate ligands. Being the conjugate base of a strong acid, sulfate is not basic. It is more commonly a counterion in coordination chemistry, not a ligand.

References

  1. Anderson, Bryan; Milburn, Ronald M.; Harrowfield, John M.; Robertson, Glen B.; Sargeson, Alan M. (1977). "Cobalt(III)-Promoted Hydrolysis of a Phosphate Ester". Journal of the American Chemical Society. 99 (8): 2652–2661. doi:10.1021/ja00450a042. PMID   850030.
  2. Connolly, James A.; Banaszczyk, Mariusz; Hynes, Rosemary C.; Chin, Jik (1994). "Reactivity of a chelated phosphate ester". Inorganic Chemistry. 33 (4): 665–669. doi:10.1021/ic00082a009.
  3. Bino, Avi; Cotton, F. Albert (1979). "The Tetrakis(hydrogen Phosphato)dimolybdenum Ion, [Mo2(HPO4)4]2-. Compounds with a Metal-Metal Triple Bond Which Are Easily Prepared and Permanently Stable in Air". Inorganic Chemistry. 18 (12): 3562–3565. doi:10.1021/ic50202a053.
  4. El-Mehdawi, Ramadan; Fronczek, Frank R.; Roundhill, D. Max (1986). "Axial Ligand Replacement Reactions in Tetrakis(mu-Phosphato)diplatinum(III) Complexes: Coordination of Amine, Thioether and Thiolate Functionalities". Inorganic Chemistry. 25 (8): 1155–1159. doi:10.1021/ic00228a019.
  5. Irmler, Manfred; Meyer, Gerd (1990). "Sulfat, Phosphat und Arsenat als dreizähnige Liganden. Synthese und Kristallstrukturen von (NMe4)2[Re3Cl9O3SO], (NMe4)2(H7O3)[Re3Cl9O3PO] und (NMe4)2(H5O2)[Re3Cl9O3AsO]". Zeitschrift für Anorganische und Allgemeine Chemie. 587: 197–207. doi:10.1002/zaac.19905870121.
  6. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1016. ISBN   978-0-08-037941-8.
  7. Selmi, Ahmed; Akriche, Samah; Rzaigui, Mohamed (2009). "Bis(2-methylanilinium) diaquabis[dihydrogendiphosphato(2−)]cobaltate(II)". Acta Crystallographica Section E: Structure Reports Online. 65 (11): m1487. Bibcode:2009AcCrE..65M1487S. doi:10.1107/S1600536809044079. PMC   2971134 . PMID   21578209.
  8. S.Kamimura, T.Iida, K.Kanao, C.Nogawa, Y.Tanabe, K.Oh-ishi, S.Fukuzawa, Y.Ishii (2005). Journal of the Institute of Science and Engineering, Chuo University. 11: 1.{{cite journal}}: Missing or empty |title= (help)CS1 maint: multiple names: authors list (link)