Most metal alkyl complexes contain other, non-alkyl ligands. Great interest, mainly theoretical, has focused on the homoleptic complexes. Indeed, the first reported example of a complex containing a metal-sp3 carbon bond was the homoleptic complex diethylzinc. Other examples include hexamethyltungsten, tetramethyltitanium, and tetranorbornylcobalt.[3]
Structure of diethylzinc. The Zn-C bonds measure 194.8(5) pm, while the C-Zn-C angle is slightly bent with 176.2(4)°.
Mixed ligand, or heteroleptic, complexes containing alkyls are numerous. In nature, vitamin B12 and its many derivatives contain reactive Co-alkyl bonds.
Hexamethyltungsten is an example of a "homoleptic" (all ligands being the same) metal alkyl complex.
Metal alkyl complexes are prepared generally by two pathways, use of alkyl nucleophiles and use of alkyl electrophiles. Nucleophilic sources of alkyl ligands include Grignard reagents and organolithium compounds. Since many strong nucleophiles are also potent reductants, mildly nucleophilic alkylating agents are sometimes employed to avoid redox reactions. Organozinc compounds and organoaluminium compounds are such milder reagents.
Electrophilic alkylation commonly starts with low valence metal complexes. Typical electrophilic reagents are alkyl halides. Illustrative is the preparation of the methyl derivative of cyclopentadienyliron dicarbonyl anion:[16]
Structure of the alkyl complex (C2H5)TiCl3(dmpe), highlighting an agostic interaction between the methyl group and the Ti(IV) center.
Agostic interactions and beta-hydride elimination
Some metal alkyls feature agostic interactions between a C-H bond on the alkyl group and the metal. Such interactions are especially common for complexes of early transition metals in their highest oxidation states.[18]
One determinant of the kinetic stability of metal-alkyl complexes is the presence of hydrogen at the position beta to the metal. If such hydrogens are present and if the metal center is coordinatively unsaturated, then the complex can undergo beta-hydride elimination to form a metal-alkene complex:
These conversions are assumed to proceed via the intermediacy of agostic interactions.
1 2 3 Morse, Paige M.; Girolami, Gregory S. (1989). "Are d0 ML6 complexes always octahedral? The x-ray structure of trigonal-prismatic [Li(tmed)]2[ZrMe6]". Journal of the American Chemical Society. 111 (11): 4114–4116. doi:10.1021/ja00193a061.
↑ Beatrice Roessler; Sven Kleinhenza; Konrad Seppelt (2000). "Pentamethylmolybdenum". Chemical Communications (12): 1039–1040. doi:10.1039/b000987n.
↑ Morris, Robert J.; Girolami, Gregory S. (1988). "Permethylmanganates. Synthesis and characterization of divalent [MnMe42-], trivalent [MnMe52-], and tetravalent [MnMe62-]". Journal of the American Chemical Society. 110 (18): 6245–6246. doi:10.1021/ja00226a049. PMID22148809.
↑ Morris, Robert J.; Girolami, Gregory S. (1991). "High-valent organomanganese chemistry. 1. Synthesis and characterization of manganese(III) and -(IV) alkyls". Organometallics. 10 (3): 792–799. doi:10.1021/om00049a047.
1 2 3 Hay-Motherwell, Robyn S.; Wilkinson, Geoffrey; Hussain, Bilquis; Hursthouse, Michael B. (1989). "Homoleptic methyl compounds of rhodium and iridium(III). X-Ray crystal structures of tetramethylethylenediamine lithium hexamethyl-rhodate(III) and -iridate(III)". Journal of the Chemical Society, Chemical Communications (19): 1436. doi:10.1039/C39890001436.
↑ Walther, Dirk; Stollenz, Michael; Görls, Helmar (2001). "Dinuclear [RNi(oxam)NiR] Complexes (Oxam = N1,N2-bis(2-pyridylmethyl)-N3,N4-bis(2,4,6-trimethylphenyl)oxalamidinate; R = Me, Ph, C⋮CH, C⋮CPH): Reactions of the Methyl Complex and Formation of [Li(THF)]2Li2Ni2Me8 and [Li(THF)]4Ni2Me8". Organometallics. 20 (20): 4221–4229. doi:10.1021/om000960u.
↑ King, B. (1970). "Applications of Metal Carbonyl Anions in the Synthesis of Unusual Organometallic Compounds". Acc. Chem. Res. 3 (12): 417–427. doi:10.1021/ar50036a004.
↑ Scherer, W.; McGrady, G. S. (2004). "Agostic Interactions in d0 Metal Alkyl Complexes". Angew. Chem. Int. Ed. 43 (14): 1782–1806. doi:10.1002/anie.200200548. PMID15054779.
↑ Forbes, Jeffrey G.; Gellman, Andrew J. (1993-07-01). "The .beta.-hydride elimination mechanism in adsorbed alkyl groups". Journal of the American Chemical Society. 115 (14): 6277–6283. doi:10.1021/ja00067a048. ISSN0002-7863.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.