Bismuth organometallic chemistry

Last updated

The stabilization of bismuth's +3 oxidation state due to the inert pair effect yields a plethora of organometallic bismuth-transition metal compounds and clusters with interesting electronics and 3D structures. [1]

Contents

Catalysts

Carbon-carbon bond formation catalyzed by bismuth organometallic compounds can proceed through two different mechanisms depending on the rate of the oxidative addition to Pd(0) Pd-Bi catalytic cycle.png
Carbon-carbon bond formation catalyzed by bismuth organometallic compounds can proceed through two different mechanisms depending on the rate of the oxidative addition to Pd(0)

Due to the inert pair effect of the heavy, organometallic compounds of Bi (III) show Lewis acid properties given the lower ability of the 6s electron pair to mix with molecular orbitals and form σ-bonds. [2] The search for non-toxic equivalents of boronic acids in advancing the Suzuki-Miyaura carbon-carbon coupling reactions and expand the scope of carbon-nitrogen and carbon-oxygen coupling ones turned chemists' attention to organometallic bismuth chemistry. [2] Two catalytic mechanisms were proposed in the C-C bond formation catalyzed by bismuth organometallic compounds. The major difference arises from the rate of the oxidative addition to Pd(0) into a C-Bi bond or C-O one, yielding cycles A and B, respectively (see image).

Compounds with a metal-Bi σ-bond

Mono-, bi-, and trimetallated bismuth-iron cyclopentadienyl complexes Fe-Bi CpCO Complexes.png
Mono-, bi-, and trimetallated bismuth-iron cyclopentadienyl complexes

Among the first representatives of the organometallic bismuth chemistry are a series of iron cyclopentadienyl compounds synthesized by Cullen et al. Characteristic to these is a σ Fe-Bi bond, the iron center bound to 1 cyclopentadienyl and to carbon monoxide ligands only having 17 electron in its coordination sphere in the absence of the Bi bond. [3] [4]

Syntheses of bismuth-manganese organometallic complexes employs bismuth trichloride salt as the bismuth-containing starting material Bi-Mn CpCO Complexes 1.png
Syntheses of bismuth-manganese organometallic complexes employs bismuth trichloride salt as the bismuth-containing starting material

Adding to this, Huttner et al. described the synthesis of mixed Mn-Bi compounds. Most of the synthetic routes use bismuth trichloride as the bismuth metal source. [5] The first proposed route relied on manganese cyclopentadienyl tricarbonyl as the starting material. A better yielding route employed [Cp(CO)2Mn(SiPh3)] anionic species as the manganese metal source. [2] The synthesized [{Cp(CO)2Mn}2BiCl] adduct dimerizes in the solid-state.

Bismuth compounds derived from transition metal carbonyl complexes

Compounds derived from various transition metal carbonyl complexes are organometallic representatives with somewhat unusual cyclic structure and electronics. Such a representative is given in the form of the paramagnetic, ten-electron, tetrahedral [Cp2Co][Bi{Co(CO)4}4] complex. [6]

Summary of metal-bismuth carbonyl complexes syntheses Metal Bi carbonyl complexes.png
Summary of metal-bismuth carbonyl complexes syntheses

Additionally, clusters like closo-[Bi3Cr2(CO)6]3- and [Bi3Mo2(CO)6]3- have been reported to stabilize the ozone-like structure of [Bi3]3-. [7] The [Bi3]3- species, isostructural and isoelectronic with ozone, can be analyzed independently as a moiety bound to the metal carbonyl complexes. The reported Bi-Bi distance falls in between the single and double bond region and is elongated compared to Bi=Bi bond in the [Bi4]2- cluster, the later displaying a bond order of 1.25. [7] This experimental observation is being rationalized by some amount of π-donation to the metal carbonyl center and simultaneously π* back-bonding to the bismuth cluster from the metallocene complex. [7]

Isomerization of bismuth-rhenium cluster carbonyl compounds Isomerization of Bi-Re complexes.png
Isomerization of bismuth-rhenium cluster carbonyl compounds

In 2009, Pearl et al. described the synthesis and isomerization of heterometallic complexes containing bismuth and rhenium. The precursors used in synthesis were an alkene-coordinated carbonyl rhenium complex and BiPh3. [8] The reaction yields two types of heteronuclear bismuth-rhenium complexes and a homodinuclear rhenium one as a side product. Upon heating, the hexametallic tribismuth-trirhenium heteronuclear complex undergoes isomerization to cis- and trans-clusters containing the bicyclo [3.3.0] core (see scheme below). Under subsequent irradiation both stereoisomers convert to a common spiro [4.3] cluster compound. [8]

Dibismuth transition metal-clusters

Adding to the transition metal-bismuth carbonyl clusters, the dibismuth clusters with transition metals have also been explored by synthetic chemists. The core of such compounds is represented in the form of dibismuthene or dibismithyne unit, in which the Bi atoms contain the inert 6s lone pair and through π-bond-donation are able to coordinate to carbonyl moieties of transition metals . [2]

Cyclobismuthane reaction with metal carbonyl complexes Cyclobismuthane reaction with metal carbonyl complexes.png
Cyclobismuthane reaction with metal carbonyl complexes

The common synthetic precursor is the trimethylsilylmethyl-cyclobismuthane. Upon reaction with tungsten pentacarbonyl, the resulting side-on adduct preserved the dibismuthene unit, while reaction with diiron noncarbonyl yields the a tetracylic heteronuclear iron-bismuth carbonyl compound (see scheme to the right). [9] [10]

Examples of dibismuthene complexes Examples of dibismuthene complexes.png
Examples of dibismuthene complexes

The complexity of the dibismuthene complexes ranges from incorporation of cobalt ions to generate a prismatic cobalto carbonyl dicapped structure in the [(CO)11Co4Bi2]- structure to iron incorporation to yield diiron dibismuth tetracyclic moiety side-on capped with cobaltocarbonyl unit. [11] [2] A similar structure was synthesized with tungsten replacing the iron units and this time capped with a bismuth-iron carbonyl-Cp'' unit. [2] Finally, another example comes in the form of a side-on coordinated zirconium dicyclopentadienyl unit to the dibismuth mesitylene moiety (see figure). [12]

Bismuth-containing clusters

Synthesis of [{Cp(m2-CO)Fe}3(m3-Bi)] Synthesis of Bi-Fe cluster.png
Synthesis of [{Cp(μ2-CO)Fe}33-Bi)]

Multiple bismuth-containing clusters were reported, some of them synthesized through carbon monoxide ligand loss from the previously reported bismuth complexes. [2] Strained cluster complexes with monodentate as well as bridging carbon monoxide units have also been isolated, such as [{Cp(μ2-CO)Fe}33-Bi)] and [(μ3-Bi)Co3(CO)6(μ-CO)3]. [13]

Spiro-like and cubane-like bismuth clusters Bismuth clusters.png
Spiro-like and cubane-like bismuth clusters

Spiro-like clusters such as [{Ru2(CO)8}(μ4-Bi){(μ-H)Ru3(CO)10} and cubane-like ones as [Bi4Co*4] are representatives as well. [2] The former displays a tetracoordinate bismuth metallic center along with a dicoordinated hydride ligand. The structure of the latter is cubic with the edges alternating bismuth and cobalt metallic centers.

"Paddlewheel" complexes

Synthesis of bismuth "paddlewheel" complexes Rhodium-bismuth paddlewheel complexes.png
Synthesis of bismuth "paddlewheel" complexes

Inspired from the dirhodium tetraacetate bimetallic salt, synthetic chemists decided to explore the synthesis of paddlewheel mixed heteronuclear bismuth-rhodium salts. The synthesis involves treatment of the [Rh2(O2CR)4] salt with the dibusmuth tetrafluoroacetate [Bi2(O2CCF3)4] equivalent. [14] [15] Depending on the nature and sterics of the R ligand, the resulting mixed salt has either two tBu R-substituents resulting in the cis mixed salt or a single Me R-substituent provenient from the dirhodium precursor (see scheme to the right). The mixed salts display increased air and moisture compared to the parental dimetallic salts and show Lewis acidity at the rhodium center. [2]

See also

Related Research Articles

In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to other atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. While fully ionic bonds are not found in nature, many bonds exhibit strong ionicity, making oxidation state a useful predictor of charge.

A transition metal carbene complex is an organometallic compound featuring a divalent carbon ligand, itself also called a carbene. Carbene complexes have been synthesized from most transition metals and f-block metals, using many different synthetic routes such as nucleophilic addition and alpha-hydrogen abstraction. The term carbene ligand is a formalism since many are not directly derived from carbenes and most are much less reactive than lone carbenes. Described often as =CR2, carbene ligands are intermediate between alkyls (−CR3) and carbynes (≡CR). Many different carbene-based reagents such as Tebbe's reagent are used in synthesis. They also feature in catalytic reactions, especially alkene metathesis, and are of value in both industrial heterogeneous and in homogeneous catalysis for laboratory- and industrial-scale preparation of fine chemicals.

<span class="mw-page-title-main">Metal carbonyl</span> Coordination complexes of transition metals with carbon monoxide ligands

Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.

Technetium compounds are chemical compounds containing the chemical element technetium. Technetium can form multiple oxidation states, but often forms in the +4 and +7 oxidation states. Because technetium is radioactive, technetium compounds are extremely rare on Earth.

<span class="mw-page-title-main">Dicobalt octacarbonyl</span> Chemical compound

Dicobalt octacarbonyl is an organocobalt compound with composition Co2(CO)8. This metal carbonyl is used as a reagent and catalyst in organometallic chemistry and organic synthesis, and is central to much known organocobalt chemistry. It is the parent member of a family of hydroformylation catalysts. Each molecule consists of two cobalt atoms bound to eight carbon monoxide ligands, although multiple structural isomers are known. Some of the carbonyl ligands are labile.

<span class="mw-page-title-main">Dimanganese decacarbonyl</span> Chemical compound

Dimanganese decacarbonyl, which has the chemical formula Mn2(CO)10, is a binary bimetallic carbonyl complex centered around the first row transition metal manganese. The first reported synthesis of Mn2(CO)10 was in 1954 at Linde Air Products Company and was performed by Brimm, Lynch, and Sesny. Their hypothesis about, and synthesis of, dimanganese decacarbonyl was fundamentally guided by the previously known dirhenium decacarbonyl (Re2(CO)10), the heavy atom analogue of Mn2(CO)10. Since its first synthesis, Mn2(CO)10 has been use sparingly as a reagent in the synthesis of other chemical species, but has found the most use as a simple system on which to study fundamental chemical and physical phenomena, most notably, the metal-metal bond. Dimanganese decacarbonyl is also used as a classic example to reinforce fundamental topics in organometallic chemistry like d-electron count, the 18-electron rule, oxidation state, valency, and the isolobal analogy.

<span class="mw-page-title-main">Dirhenium decacarbonyl</span> Chemical compound

Dirhenium decacarbonyl is the inorganic compound with the chemical formula Re2(CO)10. Commercially available, it is used as a starting point for the synthesis of many rhenium carbonyl complexes. It was first reported in 1941 by Walter Hieber, who prepared it by reductive carbonylation of rhenium. The compound consists of a pair of square pyramidal Re(CO)5 units joined via a Re-Re bond, which produces a homoleptic carbonyl complex.

Transition metal hydrides are chemical compounds containing a transition metal bonded to hydrogen. Most transition metals form hydride complexes and some are significant in various catalytic and synthetic reactions. The term "hydride" is used loosely: some of them are acidic (e.g., H2Fe(CO)4), whereas some others are hydridic, having H-like character (e.g., ZnH2).

<span class="mw-page-title-main">Organobismuth chemistry</span>

Organobismuth chemistry is the chemistry of organometallic compounds containing a carbon to bismuth chemical bond. Applications are few. The main bismuth oxidation states are Bi(III) and Bi(V) as in all higher group 15 elements. The energy of a bond to carbon in this group decreases in the order P > As > Sb > Bi. The first reported use of bismuth in organic chemistry was in oxidation of alcohols by Frederick Challenger in 1934 (using Ph3Bi(OH)2). Knowledge about methylated species of bismuth in environmental and biological media is limited.

<span class="mw-page-title-main">Rhodocene</span> Organometallic chemical compound

Rhodocene is a chemical compound with the formula [Rh(C5H5)2]. Each molecule contains an atom of rhodium bound between two planar aromatic systems of five carbon atoms known as cyclopentadienyl rings in a sandwich arrangement. It is an organometallic compound as it has (haptic) covalent rhodium–carbon bonds. The [Rh(C5H5)2] radical is found above 150 °C (302 °F) or when trapped by cooling to liquid nitrogen temperatures (−196 °C [−321 °F]). At room temperature, pairs of these radicals join via their cyclopentadienyl rings to form a dimer, a yellow solid.

Transition metal carbyne complexes are organometallic compounds with a triple bond between carbon and the transition metal. This triple bond consists of a σ-bond and two π-bonds. The HOMO of the carbyne ligand interacts with the LUMO of the metal to create the σ-bond. The two π-bonds are formed when the two HOMO orbitals of the metal back-donate to the LUMO of the carbyne. They are also called metal alkylidynes—the carbon is a carbyne ligand. Such compounds are useful in organic synthesis of alkynes and nitriles. They have been the focus on much fundamental research.

<span class="mw-page-title-main">Cyclopentadienyliron dicarbonyl dimer</span> Chemical compound

Cyclopentadienyliron dicarbonyl dimer is an organometallic compound with the formula [(η5-C5H5)Fe(CO)2]2, often abbreviated to Cp2Fe2(CO)4, [CpFe(CO)2]2 or even Fp2, with the colloquial name "fip dimer". It is a dark reddish-purple crystalline solid, which is readily soluble in moderately polar organic solvents such as chloroform and pyridine, but less soluble in carbon tetrachloride and carbon disulfide. Cp2Fe2(CO)4 is insoluble in but stable toward water. Cp2Fe2(CO)4 is reasonably stable to storage under air and serves as a convenient starting material for accessing other Fp (CpFe(CO)2) derivatives (described below).

<span class="mw-page-title-main">Transition metal fullerene complex</span>

A transition metal fullerene complex is a coordination complex wherein fullerene serves as a ligand. Fullerenes are typically spheroidal carbon compounds, the most prevalent being buckminsterfullerene, C60.

A metal carbido complex is a coordination complex that contains a carbon atom as a ligand. They are analogous to metal nitrido complexes. Carbido complexes are a molecular subclass of carbides, which are prevalent in organometallic and inorganic chemistry. Carbido complexes represent models for intermediates in Fischer–Tropsch synthesis, olefin metathesis, and related catalytic industrial processes. Ruthenium-based carbido complexes are by far the most synthesized and characterized to date. Although, complexes containing chromium, gold, iron, nickel, molybdenum, osmium, rhenium, and tungsten cores are also known. Mixed-metal carbides are also known.

Metal arene complexes are organometallic compounds of the formula (C6R6)xMLy. Common classes are of the type (C6R6)ML3 and (C6R6)2M. These compounds are reagents in inorganic and organic synthesis. The principles that describe arene complexes extend to related organic ligands such as many heterocycles (e.g. thiophene) and polycyclic aromatic compounds (e.g. naphthalene).

<span class="mw-page-title-main">Metal cluster compound</span> Cluster of three or more metals

Metal cluster compounds are a molecular ion or neutral compound composed of three or more metals and featuring significant metal-metal interactions.

Organotechnetium chemistry is the science of describing the physical properties, synthesis, and reactions of organotechnetium compounds, which are organometallic compounds containing carbon-to-technetium chemical bonds. The most common organotechnetium compounds are coordination complexes used as radiopharmaceutical imaging agents.

A Fischer carbene is a type of transition metal carbene complex, which is an organometallic compound containing a divalent organic ligand. In a Fischer carbene, the carbene ligand is a σ-donor π-acceptor ligand. Because π-backdonation from the metal centre is generally weak, the carbene carbon is electrophilic.

<span class="mw-page-title-main">Bismuthinidene</span> Class of organobismuth compounds

Bismuthinidenes are a class of organobismuth compounds, analogous to carbenes. These compounds have the general form R-Bi, with two lone pairs of electrons on the central bismuth(I) atom. Due to the unusually low valency and oxidation state of +1, most bismuthinidenes are reactive and unstable, though in recent decades, both transition metals and polydentate chelating Lewis base ligands have been employed to stabilize the low-valent bismuth(I) center through steric protection and π donation either in solution or in crystal structures. Lewis base-stabilized bismuthinidenes adopt a singlet ground state with an inert lone pair of electrons in the 6s orbital. A second lone pair in a 6p orbital and a single empty 6p orbital make Lewis base-stabilized bismuthinidenes ambiphilic.

<span class="mw-page-title-main">Disulfidobis(tricarbonyliron)</span> Chemical compound

Disulfidobis(tricarbonyliron), or Fe2(μ-S2)(CO)6, is an organometallic molecule used as a precursor in the synthesis of iron-sulfur compounds. Popularized as a synthetic building block by Dietmar Seyferth, Fe2(μ-S2)(CO)6 is commonly used to make mimics of the H-cluster in [FeFe]-hydrogenase. Much of the reactivity of Fe2(μ-S2)(CO)6 proceeds through its sulfur-centered dianion, [Fe2(μ-S)2(CO)2]2-.

References

  1. Braunschweig, Holger; Cogswell, Paul; Schwab, Katrin (January 2011). "Synthesis, structure and reactivity of complexes containing a transition metal–bismuth bond". Coordination Chemistry Reviews. 255 (1–2): 101–117. doi:10.1016/j.ccr.2010.07.002.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Braunschweig, Holger; Cogswell, Paul; Schwab, Katrin (2011-01-01). "Synthesis, structure and reactivity of complexes containing a transition metal–bismuth bond". Coordination Chemistry Reviews. 255 (1): 101–117. doi:10.1016/j.ccr.2010.07.002. ISSN   0010-8545.
  3. 1 2 Cullen, W. R.; Patmore, D. J.; Sams, J. R. (1973). "Synthesis of transition metal derivatives of arsenic, antimony, and bismuth with M-E sigma bonds". Inorganic Chemistry. 12 (4): 867–872. doi:10.1021/ic50122a032. ISSN   0020-1669.
  4. 1 2 Cullen, W. R.; Patmore, D. J.; Sams, J. R.; Newlands, M. J.; Thompson, L. K. (1971-01-01). "Cyclopentadienyldicarbonyliron derivatives of arsenic, antimony and bismuth with M–Fe σ-bonds (MAs, Sb, Bi)". Journal of the Chemical Society D: Chemical Communications (16): 952–953. doi:10.1039/C29710000952. ISSN   0577-6171.
  5. 1 2 Von Seyerl, Joachim; Huttner, Gottfried (1980-08-19). "Wismut(I)-chlorid, BiCl, als komplexligand: darstellung und struktur von [C5H5(CO)2Mn)2BiCl]2". Journal of Organometallic Chemistry. 195 (2): 207–212. doi:10.1016/S0022-328X(00)90005-6. ISSN   0022-328X.
  6. 1 2 Leigh, J. Scott; Whitmire, Kenton H. (1988). "[Cp2Co][Bi{Co(CO)4}4 ]: A Paramagnetic, Ten-Electron, Tetrahedral Complex of Bismuth". Angewandte Chemie International Edition in English. 27 (3): 396–398. doi:10.1002/anie.198803961. ISSN   0570-0833.
  7. 1 2 3 4 Xu, Li; Ugrinov, Angel; Sevov, Slavi C. (2001-05-01). "Stabilization of Ozone-like [Bi3]3- in the Heteroatomic closo -Clusters [Bi3Cr2(CO)6]3- and [Bi3Mo2(CO)6 ]3-". Journal of the American Chemical Society. 123 (17): 4091–4092. doi:10.1021/ja0038732. ISSN   0002-7863. PMID   11457165.
  8. 1 2 3 4 Adams, Richard D.; Pearl, William C. (2009-10-05). "Rhenium−Bismuth Carbonyl Cluster Compounds". Inorganic Chemistry. 48 (19): 9519–9525. doi:10.1021/ic901176x. ISSN   0020-1669. PMID   19711899.
  9. 1 2 Balázs, Lucia; Breunig, Hans Joachim; Lork, Enno (2002-07-03). "Synthesis of the Dibismuthene Complex [{μ-η2-(cis-Me3SiCH2Bi)2}{W(CO)5}2] from a Cyclobismuthane and [W(CO)5(thf)]". Angewandte Chemie International Edition. 41 (13): 2309–2312. doi:10.1002/1521-3773(20020703)41:13<2309::AID-ANIE2309>3.0.CO;2-M. ISSN   1433-7851. PMID   12203575.
  10. 1 2 Breunig, Hans Joachim (2005). "Organometallic Compounds with Homonuclear Bonds between Bismuth Atoms, 70 Years after Paneth' Report on the Violet Dimethyl Bismuth Compound". Zeitschrift für anorganische und allgemeine Chemie. 631 (4): 621–631. doi:10.1002/zaac.200400476. ISSN   0044-2313.
  11. 1 2 Martinengo, Secondo; Ciani, Gianfranco (1987-01-01). "Bismuth–cobalt heteronuclear carbonyl cluster compounds. Synthesis and X-ray characterization of the neutral [BiCo3(CO)9] and of the paramagnetic anion [Bi2Co4(CO)11]–". Journal of the Chemical Society, Chemical Communications (20): 1589–1591. doi:10.1039/C39870001589. ISSN   0022-4936.
  12. 1 2 Wang, Yuzhong; Quillian, Brandon; Yang, Xiao-Juan; Wei, Pingrong; Chen, Zhongfang; Wannere, Chaitanya S.; Schleyer, Paul v. R.; Robinson, Gregory H. (2005). "A Metallocene-Complexed Dibismuthene: Cp2Zr(BiR)2 (Cp = C5H5; R = C6H3-2,6-Mes2)". J. Am. Chem. Soc. 127 (21): 7672–7673. doi:10.1021/ja051704h. PMID   15913345.
  13. Whitmire, Kenton H.; Leigh, J. Scott; Gross, Michal E. (1987-01-01). "Isolation and characterization of the 'strained' cluster complex, (μ3-Bi)Co3(CO)6(μ-CO)3; the application of thermogravimetric analysis to rational cluster reactions". Journal of the Chemical Society, Chemical Communications (12): 926–927. doi:10.1039/C39870000926. ISSN   0022-4936.
  14. 1 2 Dikarev, Evgeny V.; Li, Bo; Zhang, Haitao (2006). "Tuning the Properties at Heterobimetallic Core: Mixed-Ligand Bismuth−Rhodium Paddlewheel Carboxylates". J. Am. Chem. Soc. 128 (9): 2814–2815. doi:10.1021/ja058294h. PMID   16506756.
  15. 1 2 Dikarev, Evgeny V.; Li, Bo; Rogachev, Andrey Yu.; Zhang, Haitao; Petrukhina, Marina A. (2008-08-01). "Metal-Site-Controlled Arene Coordination in a Heterobimetallic Bi−Rh Complex with Pyrene". Organometallics. 27 (15): 3728–3735. doi:10.1021/om8001763. ISSN   0276-7333.