| |
![]() | |
Names | |
---|---|
IUPAC name Bismuth chloride | |
Other names Bismuth trichloride, Trichlorobismuth, Trichlorobismuthine, Bismuth(III) chloride | |
Identifiers | |
3D model (JSmol) | |
ChemSpider | |
ECHA InfoCard | 100.029.203 |
PubChem CID | |
RTECS number |
|
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
BiCl3 | |
Molar mass | 315.34 g/mol |
Appearance | hygroscopic white to yellow crystals |
Density | 4.75 g/cm3 |
Melting point | 227 °C (441 °F; 500 K) |
Boiling point | 447 °C (837 °F; 720 K) |
Soluble,hydrolyses | |
Solubility | soluble in methanol, diethyl ether, acetone |
-26.5·10−6 cm3/mol | |
Structure | |
cubic | |
Thermochemistry | |
Heat capacity (C) | 0.333 J/(g K) |
Std molar entropy (S⦵298) | 82.9 J/(K mol) |
Std enthalpy of formation (ΔfH⦵298) | -1.202 kJ/g |
Hazards | |
NFPA 704 (fire diamond) | |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) | 3324 mg/kg, oral (rat) |
Safety data sheet (SDS) | JT Baker |
Related compounds | |
Other anions | bismuth fluoride, bismuth subsalicylate, bismuth trioxide |
Other cations | iron(III) chloride, manganese(II) chloride, cobalt(II) chloride |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Bismuth chloride (or butter of bismuth) is an inorganic compound with the chemical formula BiCl3. It is a covalent compound and is the common source of the Bi3+ ion. In the gas phase and in the crystal, the species adopts a pyramidal structure, in accord with VSEPR theory.
Bismuth chloride can be synthesized directly by passing chlorine over bismuth.
or by dissolving bismuth metal in aqua regia, evaporating the mixture to give BiCl3·2H2O, which can be distilled to form the anhydrous trichloride. [1]
Alternatively, it may be prepared by adding hydrochloric acid to bismuth oxide and evaporating the solution.
Also, the compound can be prepared by dissolving bismuth in concentrated nitric acid and then adding solid sodium chloride into this solution. [2]
In the gas phase BiCl3 is pyramidal with a Cl–Bi–Cl angle of 97.5° and a bond length of 242 pm. [3] In the solid state, each Bi atom has three near neighbors at 250 pm, two at 324 pm and three at a mean of 336 pm, [4] the image above highlights the three closest neighbours. This structure is similar to that of AsCl3, AsBr3, SbCl3 and SbBr3.
Bismuth chloride is hydrolyzed readily to bismuth oxychloride, BiOCl: [5]
This reaction can be reversed by adding an acid, such as hydrochloric acid. [6]
Reaction of solid BiCl3 with water vapour below 50 °C has been shown to produce the intermediate monohydrate, BiCl3·H2O. [7]
Bismuth chloride is an oxidizing agent, being readily reduced to metallic bismuth by reducing agents.
In contrast to the usual expectation by consistency with periodic trends, BiCl3 is a Lewis acid, forming a variety of chloro complexes such as [BiCl6]3− that strongly violates the octet rule. Furthermore, the octahedral structure of this coordination complex does not follow the predictions of VSEPR theory, since the lone pair on bismuth is unexpectedly stereochemically inactive. The dianionic complex [BiCl5]2− does however adopt the expected square pyramidal structure. [8]
![]() | ![]() | ![]() |
Cs3[BiCl6] | Cs3[BiCl6] | [BiCl6]3− |
Bismuth chloride is used as a catalyst in organic synthesis. In particular, it catalyzes the Michael reaction and the Mukaiyama aldol reaction. The addition of other metal iodides increases its catalytic activity. [9]
Aqua regia is a mixture of nitric acid and hydrochloric acid, optimally in a molar ratio of 1:3. Aqua regia is a fuming liquid. Freshly prepared aqua regia is colorless, but it turns yellow, orange or red within seconds due to the formation of nitrosyl chloride and nitrogen dioxide. It was named by alchemists because it can dissolve the noble metals gold and platinum, though not all metals.
Sodium hypochlorite is an inorganic chemical compound with the formula NaOCl, comprising a sodium cation and a hypochlorite anion. It may also be viewed as the sodium salt of hypochlorous acid. The anhydrous compound is unstable and may decompose explosively. It can be crystallized as a pentahydrate NaOCl·5H
2O, a pale greenish-yellow solid which is not explosive and is stable if kept refrigerated.
Lead(II) chloride (PbCl2) is an inorganic compound which is a white solid under ambient conditions. It is poorly soluble in water. Lead(II) chloride is one of the most important lead-based reagents. It also occurs naturally in the form of the mineral cotunnite.
Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).
Aluminium chloride, also known as aluminium trichloride, is an inorganic compound with the formula AlCl3. It forms hexahydrate with the formula [Al(H2O)6]Cl3, containing six water molecules of hydration. Both are colourless crystals, but samples are often contaminated with iron(III) chloride, giving a yellow color.
Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive and moisture-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.
Phosphorus trichloride is an inorganic compound with the chemical formula PCl3. A colorless liquid when pure, it is an important industrial chemical, being used for the manufacture of phosphites and other organophosphorus compounds. It is toxic and reacts readily with water to release hydrogen chloride.
Tin(II) chloride, also known as stannous chloride, is a white crystalline solid with the formula SnCl2. It forms a stable dihydrate, but aqueous solutions tend to undergo hydrolysis, particularly if hot. SnCl2 is widely used as a reducing agent (in acid solution), and in electrolytic baths for tin-plating. Tin(II) chloride should not be confused with the other chloride of tin; tin(IV) chloride or stannic chloride (SnCl4).
Terbium(III,IV) oxide, occasionally called tetraterbium heptaoxide, has the formula Tb4O7, though some texts refer to it as TbO1.75. There is some debate as to whether it is a discrete compound, or simply one phase in an interstitial oxide system. Tb4O7 is one of the main commercial terbium compounds, and the only such product containing at least some Tb(IV) (terbium in the +4 oxidation state), along with the more stable Tb(III). It is produced by heating the metal oxalate, and it is used in the preparation of other terbium compounds. Terbium forms three other major oxides: Tb2O3, TbO2, and Tb6O11.
Arsenic trichloride is an inorganic compound with the formula AsCl3, also known as arsenous chloride or butter of arsenic. This poisonous oil is colourless, although impure samples may appear yellow. It is an intermediate in the manufacture of organoarsenic compounds.
Antimony trichloride is the chemical compound with the formula SbCl3. It is a soft colorless solid with a pungent odor and was known to alchemists as butter of antimony.
Gallium trichloride is the chemical compound with the formula GaCl3. Solid gallium trichloride exists as a dimer with the formula Ga2Cl6. It is colourless and soluble in virtually all solvents, even alkanes, which is truly unusual for a metal halide. It is the main precursor to most derivatives of gallium and a reagent in organic synthesis.
Chloroauric acid is an inorganic compound with the chemical formula H[AuCl4]. It forms hydrates H[AuCl4]·nH2O. Both the trihydrate and tetrahydrate are known. Both are orange-yellow solids consisting of the planar [AuCl4]− anion. Often chloroauric acid is handled as a solution, such as those obtained by dissolution of gold in aqua regia. These solutions can be converted to other gold complexes or reduced to metallic gold or gold nanoparticles.
Selenium tetrachloride is the inorganic compound composed with the formula SeCl4. This compound exists as yellow to white volatile solid. It is one of two commonly available selenium chlorides, the other example being selenium monochloride, Se2Cl2. SeCl4 is used in the synthesis of other selenium compounds.
Germanium dichloride is a chemical compound of germanium and chlorine with the formula GeCl2. It is a solid and contains germanium in the +2 oxidation state.
Bismuth oxychloride is an inorganic compound of bismuth with the formula BiOCl. It is a lustrous white solid used since antiquity, notably in ancient Egypt. Light wave interference from its plate-like structure gives a pearly iridescent light reflectivity similar to nacre. It is also known as pearl white.
Berkelium forms a number of chemical compounds, where it normally exists in an oxidation state of +3 or +4, and behaves similarly to its lanthanide analogue, terbium. Like all actinides, berkelium easily dissolves in various aqueous inorganic acids, liberating gaseous hydrogen and converting into the trivalent oxidation state. This trivalent state is the most stable, especially in aqueous solutions, but tetravalent berkelium compounds are also known. The existence of divalent berkelium salts is uncertain and has only been reported in mixed lanthanum chloride-strontium chloride melts. Aqueous solutions of Bk3+ ions are green in most acids. The color of the Bk4+ ions is yellow in hydrochloric acid and orange-yellow in sulfuric acid. Berkelium does not react rapidly with oxygen at room temperature, possibly due to the formation of a protective oxide surface layer; however, it reacts with molten metals, hydrogen, halogens, chalcogens and pnictogens to form various binary compounds. Berkelium can also form several organometallic compounds.
In chemistry, molecular oxohalides (oxyhalides) are a group of chemical compounds in which both oxygen and halogen atoms are attached to another chemical element A in a single molecule. They have the general formula AOmXn, where X = fluorine (F), chlorine (Cl), bromine (Br), and/or iodine (I). The element A may be a main group element, a transition element or an actinide. The term oxohalide, or oxyhalide, may also refer to minerals and other crystalline substances with the same overall chemical formula, but having an ionic structure.
Lanthanide trichlorides are a family of inorganic compound with the formula LnCl3, where Ln stands for a lanthanide metal. The trichlorides are standard reagents in applied and academic chemistry of the lanthanides. They exist as anhydrous solids and as hydrates.
Berkelium(III) chloride also known as berkelium trichloride, is a chemical compound with the formula BkCl3. It is a water-soluble green solid with a melting point of 603 °C. This compound forms the hexahydrate, BkCl3·6H2O.