Names | |
---|---|
IUPAC name pentabismuth;oxygen(2-);nonahydroxide;tetranitrate | |
Other names Bismuthyl nitrate Basic bismuth nitrate Bismuth subnitrate [USP:JAN] Bismutum subnitricum Magisterium bismuti | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
DrugBank | |
MeSH | bismuth+subnitrate |
PubChem CID | |
UNII | |
Properties | |
Bi5H9N4O22 (Basic formula) [1] | |
Molar mass | 1461.99 g/mol [1] |
Density | 1.79 g/mL (H2O) [1] |
Melting point | Decomposes at 260 [1] |
Boiling point | Decomposes at 260 [1] |
Insoluble [1] | |
Hazards | |
GHS labelling: | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Names | |
---|---|
IUPAC name oxobismuthanyl nitrate;hydrate | |
Identifiers | |
3D model (JSmol) | |
PubChem CID | |
| |
| |
Properties | |
BiH2NO5 (Basic formula) [2] | |
Molar mass | 305 g/mol [2] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Bismuth oxynitrate is the name applied to a number of compounds that contain Bi3+, nitrate ions and oxide ions and which can be considered as compounds formed from Bi2O3, N2O5 and H2O. Other names for bismuth oxynitrate include bismuth subnitrate and bismuthyl nitrate. In older texts bismuth oxynitrate is often simply described as BiONO3 or basic bismuth nitrate. Bismuth oxynitrate was once called magisterium bismuti or bismutum subnitricum, and was used as a white pigment, in beauty care, and as a gentle disinfectant for internal and external use. [3] [4] It is also used to form Dragendorff's reagent, which is used as a TLC stain.
Bismuth oxynitrate is commercially available as Bi5O(OH)9(NO3)4 (CAS number: 1304-85-4 ) or as BiONO3·H2O (CAS Number: 13595-83-0 ).
Some compounds have been fully characterised with single crystal studies and found to contain the octahedral [Bi6Ox(OH)8−x](10−x)+ cation. There is indirect evidence that either the octahedral cation Bi
6O
4(OH)6+
4 [4] or the octahedral cation Bi
6(OH)6+
12 [5] is present in aqueous solution following the polymerisation of Bi(H
2O)3+
8, the Bi3+ ion present in acidic solutions. [6] The ion Bi
6O
4(OH)6+
4 is found in the perchlorate compound Bi6O4(OH)4ClO4·7H2O [7] and is isoelectronic with the octahedral Sn6O4(OH)4 cluster found in the hydrate of tin(II) oxide, 3SnO·H2O. [5] The compounds that contain this are:
The compound Bi6O5(OH)3(NO3)5·3H2O (equivalent to 6Bi2O3·5N2O5·9H2O) also contains the octahedral units but this time they are joined to form {[Bi6O5(OH)3]5+}2. [12]
Additionally some oxynitrates have layer structures (a common motif also found in bismuth(III) oxyhalides):
The octahedral ion has 6 Bi3+ ions at the corners of an octahedron. There is no covalent bond between the Bi atoms, they are held in position by bridging O2− and OH− anions, one at the centre of each of the eight triangular faces, bridging three Bi ions. The Bi ions are essentially four coordinate and are at the apex of a flat square pyramid. An ab initio theoretical study of the hydration mechanism of Bi3+ and the structure concludes that the lone pairs on the Bi3+ ions are stereochemically active. [15]
Bismuth oxynitrates can be prepared from bismuth(III) nitrate. For example, hydrolysis of a solution of bismuth nitrate through the addition of alkali or the reaction of the pentahydrate, BiNO3·5H2O with KOH, or the controlled thermal decomposition of the pentahydrate.
The thermal decomposition of bismuth nitrate pentahydrate proceeds through the following stages: [16]
The final oxynitrate product of thermal dehydration is believed to be Bi5O7NO3, [14] which is isostructural with β–Bi5O7I and has a layer structure. [17] The ultimate stage of thermal decomposition of oxynitrates is bismuth(III) oxide, Bi2O3.
Copper(II) nitrate describes any member of the family of inorganic compounds with the formula Cu(NO3)2(H2O)x. The hydrates are blue solids. Anhydrous copper nitrate forms blue-green crystals and sublimes in a vacuum at 150-200 °C. Common hydrates are the hemipentahydrate and trihydrate.
In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.
Indium(III) sulfate (In2(SO4)3) is a sulfate salt of the metal indium. It is a sesquisulfate, meaning that the sulfate group occurs 11/2 times as much as the metal. It may be formed by the reaction of indium, its oxide, or its carbonate with sulfuric acid. An excess of strong acid is required, otherwise insoluble basic salts are formed. As a solid indium sulfate can be anhydrous, or take the form of a pentahydrate with five water molecules or a nonahydrate with nine molecules of water. Indium sulfate is used in the production of indium or indium containing substances. Indium sulfate also can be found in basic salts, acidic salts or double salts including indium alum.
Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO3)3.(H2O)n. Most common is the nonahydrate Fe(NO3)3.(H2O)9. The hydrates are all pale colored, water-soluble paramagnetic salts.
Nickel nitrate is the inorganic compound Ni(NO3)2 or any hydrate thereof. In the hexahydrate, the nitrate anions are not bonded to nickel. Other hydrates have also been reported: Ni(NO3)2.9H2O, Ni(NO3)2.4H2O, and Ni(NO3)2.2H2O.
Bismuth chloride (or butter of bismuth) is an inorganic compound with the chemical formula BiCl3. It is a covalent compound and is the common source of the Bi3+ ion. In the gas phase and in the crystal, the species adopts a pyramidal structure, in accord with VSEPR theory.
Cobalt nitrate is the inorganic compound with the formula Co(NO3)2.xH2O. It is cobalt(II)'s salt. The most common form is the hexahydrate Co(NO3)2·6H2O, which is a red-brown deliquescent salt that is soluble in water and other polar solvents.
Bismuth(III) iodide is the inorganic compound with the formula BiI3. This gray-black salt is the product of the reaction of bismuth and iodine, which once was of interest in qualitative inorganic analysis.
Bismuth oxychloride is an inorganic compound of bismuth with the formula BiOCl. It is a lustrous white solid used since antiquity, notably in ancient Egypt. Light wave interference from its plate-like structure gives a pearly iridescent light reflectivity similar to nacre. Previously, until the last decade of the twentieth century, bismuth oxochloride was known as bismuthyl chloride. It is also known as pigment pearl white.
Sodium bismuthate is an inorganic compound, and a strong oxidiser with chemical formula NaBiO3. It is somewhat hygroscopic, but not soluble in cold water, which can be convenient since the reagent can be easily removed after the reaction. It is one of the few water insoluble sodium salts. Commercial samples may be a mixture of bismuth(V) oxide, sodium carbonate and sodium peroxide.
Manganese(II) nitrate refers to the inorganic compounds with formula Mn(NO3)2·(H2O)n. These compounds are nitrate salts containing varying amounts of water. A common derivative is the tetrahydrate, Mn(NO3)2·4H2O, but mono- and hexahydrates are also known as well as the anhydrous compound. Some of these compounds are useful precursors to the oxides of manganese. Typical of a manganese(II) compound, it is a paramagnetic pale pink solid.
Bismuth(III) nitrate is a salt composed of bismuth in its cationic +3 oxidation state and nitrate anions. The most common solid form is the pentahydrate. It is used in the synthesis of other bismuth compounds. It is available commercially. It is the only nitrate salt formed by a group 15 element, indicative of bismuth's metallic nature.
Cerium nitrate refers to a family of nitrates of cerium in the +3 or +4 oxidation state. Often these compounds contain water, hydroxide, or hydronium ions in addition to cerium and nitrate. Double nitrates of cerium also exist.
Zirconium nitrate is a volatile anhydrous transition metal nitrate salt of zirconium with formula Zr(NO3)4. It has alternate names of zirconium tetranitrate, or zirconium(IV) nitrate.
Thorium(IV) nitrate is a chemical compound, a salt of thorium and nitric acid with the formula Th(NO3)4. A white solid in its anhydrous form, it can form tetra- and pentahydrates. As a salt of thorium it is weakly radioactive.
Indium(III) nitrate is a nitrate salt of indium which forms various hydrates. Only the pentahydrate has been crystallographically verified. Other hydrates are also reported in literature, such as the trihydrate.
Ytterbium(III) nitrate is an inorganic compound, a salt of ytterbium and nitric acid with the chemical formula Yb(NO3)3. The compound forms colorless crystals, dissolves in water, and also forms crystalline hydrates.
Lutetium(III) nitrate is an inorganic compound, a salt of lutetium and nitric acid with the chemical formula Lu(NO3)3. The compound forms colorless crystals, dissolves in water, and also forms crystalline hydrates. The compound is poisonous.
A transition metal nitrate complex is a coordination compound containing one or more nitrate ligands. Such complexes are common starting reagents for the preparation of other compounds.
Bismuth forms mainly trivalent and a few pentavalent compounds. Many of its chemical properties are similar to those of arsenic and antimony, although much less toxic.