Copper(I) nitrate

Last updated
Copper(I) nitrate
Names
IUPAC name
copper(1+) nitrate
Other names
cuprous nitrate
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/Cu.NO3/c;2-1(3)4/q+1;-1
    Key: XVOMHXSMRIJNDW-UHFFFAOYSA-N
  • [N+](=O)([O-])[O-].[Cu+]
Properties
CuNO3
Molar mass 125.5509
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Copper(I) nitrate is a proposed inorganic compound with formula of CuNO3. It has not been characterized by X-ray crystallography. It is the focus of one publication, which describes unsuccessful efforts to isolate the compound. Another nonexistent simple copper(I) compound derived from an oxyanion is cuprous perchlorate. On the other hand, cuprous sulfate is known. [1]

Derivatives

The nitrate salt of the acetonitrile complex, i.e., [Cu(MeCN)4]NO3, is generated by the reaction of silver nitrate with a suspension of copper metal in acetonitrile. [2]

Cu + AgNO3 + 4 CH3CN → [Cu(CH3CN)4]NO3 + Ag

Tertiary phosphine complexes of the type [Cu(P(C6H5)3)3]NO3 are prepared by the reduction of copper(II) nitrate by the phosphine. [3]

Related Research Articles

<span class="mw-page-title-main">Silver nitrate</span> Chemical compound

Silver nitrate is an inorganic compound with chemical formula AgNO
3
. It is a versatile precursor to many other silver compounds, such as those used in photography. It is far less sensitive to light than the halides. It was once called lunar caustic because silver was called luna by ancient alchemists who associated silver with the moon. In solid silver nitrate, the silver ions are three-coordinated in a trigonal planar arrangement.

<span class="mw-page-title-main">Precipitation (chemistry)</span> Chemical process leading to the settling of an insoluble solid from a solution

In an aqueous solution, precipitation is the "sedimentation of a solid material from a liquid solution". The solid formed is called the precipitate. In case of an inorganic chemical reaction leading to precipitation, the chemical reagent causing the solid to form is called the precipitant.

<span class="mw-page-title-main">Copper(I) oxide</span> Chemical compound – an oxide of copper with formula Cu2O

Copper(I) oxide or cuprous oxide is the inorganic compound with the formula Cu2O. It is one of the principal oxides of copper, the other being copper(II) oxide or cupric oxide (CuO).The compound can appear either yellow or red, depending on the size of the particles. Cuprous oxide is found as the mineral cuprite. It is a component of some antifouling paints, but also has other applications including some that exploit its property as a semiconductor.

<span class="mw-page-title-main">Copper(II) nitrate</span> Chemical compound

Copper(II) nitrate describes any member of the family of inorganic compounds with the formula Cu(NO3)2(H2O)x. The hydrates are blue solids. Anhydrous copper nitrate forms blue-green crystals and sublimes in a vacuum at 150-200 °C. Common hydrates are the hemipentahydrate and trihydrate.

<span class="mw-page-title-main">Copper(II) oxide</span> Chemical compound – an oxide of copper with formula CuO

Copper(II) oxide or cupric oxide is an inorganic compound with the formula CuO. A black solid, it is one of the two stable oxides of copper, the other being Cu2O or copper(I) oxide (cuprous oxide). As a mineral, it is known as tenorite, or sometimes black copper. It is a product of copper mining and the precursor to many other copper-containing products and chemical compounds.

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

<span class="mw-page-title-main">Copper(I) iodide</span> Chemical compound

Copper(I) iodide is an inorganic compound with the chemical formula CuI. It is also known as cuprous iodide. It is useful in a variety of applications ranging from organic synthesis to cloud seeding.

In chemical nomenclature, the IUPAC nomenclature of inorganic chemistry is a systematic method of naming inorganic chemical compounds, as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in Nomenclature of Inorganic Chemistry. Ideally, every inorganic compound should have a name from which an unambiguous formula can be determined. There is also an IUPAC nomenclature of organic chemistry.

<span class="mw-page-title-main">Copper(I) cyanide</span> Chemical compound

Copper(I) cyanide is an inorganic compound with the formula CuCN. This off-white solid occurs in two polymorphs; impure samples can be green due to the presence of Cu(II) impurities. The compound is useful as a catalyst, in electroplating copper, and as a reagent in the preparation of nitriles.

<span class="mw-page-title-main">Silver compounds</span> Chemical compounds containing silver

Silver is a relatively unreactive metal, although it can form several compounds. The common oxidation states of silver are (in order of commonness): +1 (the most stable state; for example, silver nitrate, AgNO3); +2 (highly oxidising; for example, silver(II) fluoride, AgF2); and even very rarely +3 (extreme oxidising; for example, potassium tetrafluoroargentate(III), KAgF4). The +3 state requires very strong oxidising agents to attain, such as fluorine or peroxodisulfate, and some silver(III) compounds react with atmospheric moisture and attack glass. Indeed, silver(III) fluoride is usually obtained by reacting silver or silver monofluoride with the strongest known oxidizing agent, krypton difluoride.

<span class="mw-page-title-main">Copper(I) fluoride</span> Chemical compound

Copper(I) fluoride or cuprous fluoride is an inorganic compound with the chemical formula CuF. Its existence is uncertain. It was reported in 1933 to have a sphalerite-type crystal structure. Modern textbooks state that CuF is not known, since fluorine is so electronegative that it will always oxidise copper to its +2 oxidation state. Complexes of CuF such as [(Ph3P)3CuF] are, however, known and well characterised.

<span class="mw-page-title-main">Silver hexafluorophosphate</span> Chemical compound

Silver hexafluorophosphate, sometimes referred to "silver PF-6," is an inorganic compound with the chemical formula AgPF6.

Copper(I) hydroxide is the inorganic compound with the chemical formula of CuOH. Little evidence exists for its existence. A similar situation applies to the monohydroxides of gold(I) and silver(I). Solid CuOH has been claimed however as an unstable yellow-red solid. The topic has been the subject of theoretical analysis. Copper(I) hydroxide would also be expect to easily oxidise to copper(II) hydroxide:

<span class="mw-page-title-main">Tetrakis(acetonitrile)copper(I) hexafluorophosphate</span> Chemical compound

Tetrakis(acetonitrile)copper(I) hexafluorophosphate is a salt with the formula [Cu(CH3CN)4]PF6. It is a colourless solid that is used in the synthesis of other copper complexes. The cation [Cu(CH3CN)4]+ is a well-known example of a transition metal nitrile complex.

<span class="mw-page-title-main">Organosilver chemistry</span> Study of chemical compounds containing carbon-silver chemical bonds

Organosilver chemistry is the study of organometallic compounds containing a carbon to silver chemical bond. The theme is less developed than organocopper chemistry.

Copper(I) sulfate, also known as cuprous sulfate, is an inorganic compound with the chemical formula Cu2SO4. It is a white solid, in contrast to copper(II) sulfate, which is blue in hydrous form. Compared to the commonly available reagent, copper(II) sulfate, copper(I) sulfate is unstable and not readily available.

<span class="mw-page-title-main">Iron(II) nitrate</span> Chemical compound

Iron(II) nitrate is the nitrate salt of iron(II). It is commonly encountered as the green hexahydrate, Fe(NO3)2·6H2O, which is a metal aquo complex, however it is not commercially available unlike iron(III) nitrate due to its instability to air. The salt is soluble in water and serves as a ready source of ferrous ions.

A nitrate nitrite, or nitrite nitrate, is a coordination complex or other chemical compound that contains both nitrite and nitrate anions. They are mixed-anion compounds, and they are mixed-valence compounds. Some have third anions. Many nitrite nitrate compounds are coordination complexes of cobalt. Such a substance was discovered by Wolcott Gibbs and Frederick Genth in 1857.

<span class="mw-page-title-main">Transition metal nitrate complex</span> Compound of nitrate ligands

A transition metal nitrate complex is a coordination compound containing one or more nitrate ligands. Such complexes are common starting reagents for the preparation of other compounds.

<span class="mw-page-title-main">Copper compounds</span> Chemical compounds containing copper

Copper forms a rich variety of compounds, usually with oxidation states +1 and +2, which are often called cuprous and cupric, respectively. Copper compounds, whether organic complexes or organometallics, promote or catalyse numerous chemical and biological processes.

References

  1. Berthold, H. J.; Born, J.; Wartchow, R. (1988). "The crystal structure of copper(I)sulfate Cu2SO4 – The first structure of a simple cuprous oxo-salt". Z. Kristallogr. Cryst. Mater. 183: 309–318. doi:10.1524/zkri.1988.183.14.309. S2CID   101673081.
  2. Howard Houlston Morgan (1923). "Preparation and stability of cuprous nitrate and other cuprous salts in presence of nitriles". Journal of the Chemical Society, Transactions. 123: 2901–2907. doi:10.1039/CT9232302901.
  3. Gysling, Henry J. (1979). "Coordination Complexes of Copper(I) Nitrate". Inorganic Syntheses. 19: 92–97. doi:10.1002/9780470132500.ch19.