Copper(II) telluride

Last updated
Copper(II) telluride
CuTe-HRTEM.jpg
TEM image of CuTe viewed along the a axis. Red and blue circles mark Te and Cu.
Names
IUPAC name
Copper(II) telluride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.482 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 234-644-0
PubChem CID
  • InChI=1S/Cu.Te
    Key: QZCHKAUWIRYEGK-UHFFFAOYSA-N
  • [Cu]=[Te]
Properties
CuTe
Molar mass 191.15 g/mol
AppearanceYellow crystals
Density 7.09 g/cm3 [1]
insoluble
Structure [2]
Orthorhombic), oP4
Pmmn (No. 59)
a = 0.315 nm, b = 0.409 nm, c = 0.695 nm
2
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Copper(II) telluride is an inorganic compound with the chemical formula CuTe that occurs in nature as a rare mineral vulcanite.

Related Research Articles

<span class="mw-page-title-main">Tellurium</span> Chemical element, symbol Te and atomic number 52

Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally found in its native form as elemental crystals. Tellurium is far more common in the Universe as a whole than on Earth. Its extreme rarity in the Earth's crust, comparable to that of platinum, is due partly to its formation of a volatile hydride that caused tellurium to be lost to space as a gas during the hot nebular formation of Earth.

A period 5 element is one of the chemical elements in the fifth row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The fifth period contains 18 elements, beginning with rubidium and ending with xenon. As a rule, period 5 elements fill their 5s shells first, then their 4d, and 5p shells, in that order; however, there are exceptions, such as rhodium.

<span class="mw-page-title-main">Petzite</span> Telluride mineral

The mineral petzite, Ag3AuTe2, is a soft, steel-gray telluride mineral generally deposited by hydrothermal activity. It forms isometric crystals, and is usually associated with rare tellurium and gold minerals, often with silver, mercury, and copper.

<span class="mw-page-title-main">Copper(II) sulfate</span> Chemical compound

Copper(II) sulfate, also known as copper sulphate, is an inorganic compound with the chemical formula CuSO4. It forms hydrates CuSO4·nH2O, where n can range from 1 to 7. The pentahydrate (n = 5), a bright blue crystal, is the most commonly encountered hydrate of copper(II) sulfate. Older names for the pentahydrate include blue vitriol, bluestone, vitriol of copper, and Roman vitriol. It exothermically dissolves in water to give the aquo complex [Cu(H2O)6]2+, which has octahedral molecular geometry. The structure of the solid pentahydrate reveals a polymeric structure wherein copper is again octahedral but bound to four water ligands. The Cu(II)(H2O)4 centers are interconnected by sulfate anions to form chains. Anhydrous copper sulfate is a light grey powder.

<span class="mw-page-title-main">Copper(I) chloride</span> Chemical compound

Copper(I) chloride, commonly called cuprous chloride, is the lower chloride of copper, with the formula CuCl. The substance is a white solid sparingly soluble in water, but very soluble in concentrated hydrochloric acid. Impure samples appear green due to the presence of copper(II) chloride (CuCl2).

<span class="mw-page-title-main">Rickardite</span>

Rickardite is a telluride mineral, a copper telluride (Cu7Te5) or Cu3-x (x = 0 to 0.36)Te2. It was first described for an occurrence in the Good Hope Mine, Vulcan district, Gunnison County, Colorado, US, and named for mining engineer Thomas Arthur Rickard (1864–1953). It is a low temperature hydrothermal mineral that occurs associated with vulcanite, native tellurium, cameronite, petzite, sylvanite, berthierite, pyrite, arsenopyrite and bornite.

<span class="mw-page-title-main">Telluride mineral</span>

A telluride mineral is a mineral that has the telluride anion as a main component.

<span class="mw-page-title-main">Copper(I) iodide</span> Chemical compound

Copper(I) iodide is the inorganic compound with the formula CuI. It is also known as cuprous iodide. It is useful in a variety of applications ranging from organic synthesis to cloud seeding.

<span class="mw-page-title-main">Zinc telluride</span> Chemical compound

Zinc telluride is a binary chemical compound with the formula ZnTe. This solid is a semiconductor material with a direct band gap of 2.26 eV. It is usually a p-type semiconductor. Its crystal structure is cubic, like that for sphalerite and diamond.

<span class="mw-page-title-main">Copper(II) arsenate</span> Chemical compound

Copper arsenate (Cu3(AsO4)2·4H2O, or Cu5H2(AsO4)4·2H2O), also called copper orthoarsenate, tricopper arsenate, cupric arsenate, or tricopper orthoarsenate, is a blue or bluish-green powder insoluble in water and alcohol and soluble in aqueous ammonium and dilute acids. Its CAS number is 7778-41-8 or 10103-61-4.

<span class="mw-page-title-main">Bismuth telluride</span> Chemical compound

Bismuth telluride is a gray powder that is a compound of bismuth and tellurium also known as bismuth(III) telluride. It is a semiconductor, which, when alloyed with antimony or selenium, is an efficient thermoelectric material for refrigeration or portable power generation. Bi2Te3 is a topological insulator, and thus exhibits thickness-dependent physical properties.

<span class="mw-page-title-main">Lead telluride</span> Chemical compound

Lead telluride is a compound of lead and tellurium (PbTe). It crystallizes in the NaCl crystal structure with Pb atoms occupying the cation and Te forming the anionic lattice. It is a narrow gap semiconductor with a band gap of 0.32 eV. It occurs naturally as the mineral altaite.

<span class="mw-page-title-main">Mercury telluride</span> Topologically insulating chemical compound

Mercury telluride (HgTe) is a binary chemical compound of mercury and tellurium. It is a semi-metal related to the II-VI group of semiconductor materials. Alternative names are mercuric telluride and mercury(II) telluride.

<span class="mw-page-title-main">Hydrogen telluride</span> Chemical compound

Hydrogen telluride is the inorganic compound with the formula H2Te. A hydrogen chalcogenide and the simplest hydride of tellurium, it is a colorless gas. Although unstable in ambient air, the gas can exist at very low concentrations long enough to be readily detected by the odour of rotting garlic at extremely low concentrations; or by the revolting odour of rotting leeks at somewhat higher concentrations. Most compounds with Te–H bonds (tellurols) are unstable with respect to loss of H2. H2Te is chemically and structurally similar to hydrogen selenide, both are acidic. The H–Te–H angle is about 90°. Volatile tellurium compounds often have unpleasant odours, reminiscent of decayed leeks or garlic.

Vulcan may refer to:

<span class="mw-page-title-main">Temagamite</span>

Temagamite is a bright white palladium mercury telluride mineral with a hardness of 2+12 on the Mohs scale. Its chemical formula is Pd3HgTe3. It was discovered at the Temagami Mine on Temagami Island, Lake Temagami in 1973, and it represents a rare mineral in the Temagami Greenstone Belt.

<span class="mw-page-title-main">Vulcanite</span>

Vulcanite is a rare copper telluride mineral. The mineral has a metallic luster, and has a green or bronze-yellow tint. It has a hardness between 1 and 2 on the Mohs scale. Its crystal structure is orthorhombic.

<span class="mw-page-title-main">Copper(II) phosphate</span> Chemical compound

Copper(II) phosphate are inorganic compounds with the formula Cu3(PO4)2. They can be regarded as the cupric salts of phosphoric acid. Anhydrous copper(II) phosphate and a trihydrate are blue solids.

Copper telluride may refer to:

Copper(I) telluride is an inorganic compound with the chemical formula Cu2Te. It can be synthesized by reacting elemental copper and tellurium with a molar ratio of 2:1 at 1200 °C in a vacuum. Cu2Te has potential applications in thermoelectric elements and in solar cells, where it is alloyed with cadmium telluride to create a heterojunction.

References

  1. Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. p. 4.60. ISBN   9781498754293.
  2. Cameron E.N.; Threadgold I.M. (1961). "Vulcanite, a new copper telluride from Colorado, with notes on certain associated minerals" (PDF). Am. Mineral. 46: 258–268.