Dimethyl telluride

Last updated
Dimethyl telluride
Dimethyl-telluride-2D.svg
Dimethyl-telluride-3D-balls.png
Names
Preferred IUPAC name
(Methyltellanyl)methane
Other names
Dimethyltellurium [1] (additive)
Dimethyltellane
Identifiers
3D model (JSmol)
1696849
ChEBI
ChemSpider
ECHA InfoCard 100.008.919 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 209-809-5
1480
KEGG
MeSH dimethyltelluride
PubChem CID
  • InChI=1S/C2H6Te/c1-3-2/h1-2H3 X mark.svgN
    Key: YMUZFVVKDBZHGP-UHFFFAOYSA-N X mark.svgN
  • C[Te]C
Properties
C2H6Te
Molar mass 157.67 g·mol−1
AppearancePale yellow, translucent liquid
Odor Garlic
Melting point −10 °C (14 °F; 263 K)
Boiling point 82 °C (180 °F; 355 K)
Related compounds
Related chalcogenides
Dimethyl oxide (dimethyl ether)

Dimethyl sulfide
Dimethyl selenide

Related compounds
Hydrogen telluride

Diphenyl telluride

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Dimethyl telluride is an organotelluride compound, formula (CH3)2 Te, also known by the abbreviation DMTe.

This was the first material used to grow epitaxial cadmium telluride and mercury cadmium telluride using metalorganic vapour phase epitaxy. [2] [3]

Dimethyl telluride as a product of microbial metabolism was first discovered in 1939. [4] It is produced by some fungi and bacteria ( Penicillium brevicaule, P. chrysogenum, and P. notatum and the bacterium Pseudomonas fluorescens ). [5]

The toxicity of DMTe is unclear. It is produced by the body when tellurium or one of its compounds are ingested. It is noticeable by the garlic smelling breath it gives those exposed, similar to the effect of DMSO. Tellurium is known to be toxic. [6]

Related Research Articles

Chalcogen Group of chemical elements

The chalcogens are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. It consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive element polonium (Po). The chemically uncharacterized synthetic element livermorium (Lv) is predicted to be a chalcogen as well. Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word khalkόs (χαλκός) principally meaning copper, and the Latinized Greek word genēs, meaning born or produced.

Selenium Chemical element, symbol Se and atomic number 34

Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, and also has similarities to arsenic. It seldom occurs in its elemental state or as pure ore compounds in the Earth's crust. Selenium – from Greek selḗnē – was discovered in 1817 by Jöns Jacob Berzelius, who noted the similarity of the new element to the previously discovered tellurium.

Tellurium Chemical element, symbol Te and atomic number 52

Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally found in native form as elemental crystals. Tellurium is far more common in the Universe as a whole than on Earth. Its extreme rarity in the Earth's crust, comparable to that of platinum, is due partly to its formation of a volatile hydride that caused tellurium to be lost to space as a gas during the hot nebular formation of Earth.

The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The fifth period contains 18 elements, beginning with rubidium and ending with xenon. As a rule, period 5 elements fill their 5s shells first, then their 4d, and 5p shells, in that order; however, there are exceptions, such as rhodium.

Bioremediation Process used to treat contaminated media such as water and soil

Bioremediation broadly refers to any process wherein a biological system, living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc, in natural or artificial settings. The natural ability of organisms to adsorb, accumulate, and degrade common and emerging pollutants has attracted the use of biological resources in treatment of contaminated environment. In comparison to conventional physiochemical treatment methods which suffer serious drawbacks, bioremediation is sustainable, eco-friendly, cheap, and scalable. Most bioremediation is inadvertent, involving native organisms. Research on bioremediation is heavily focused on stimulating the process by inoculation of a polluted site with organisms or supplying nutrients to promote the growth. In principle, bioremediation could be used to reduce the impact of byproducts created from anthropogenic activities, such as industrialization and agricultural processes. Bioremediation could prove less expensive and more sustainable than other remediation alternatives.

Disinfectant Antimicrobial agent that inactivates or destroys microbes

A disinfectant is a chemical substance or compound used to inactivate or destroy microorganisms on inert surfaces. Disinfection does not necessarily kill all microorganisms, especially resistant bacterial spores; it is less effective than sterilization, which is an extreme physical or chemical process that kills all types of life. Disinfectants are generally distinguished from other antimicrobial agents such as antibiotics, which destroy microorganisms within the body, and antiseptics, which destroy microorganisms on living tissue. Disinfectants are also different from biocides—the latter are intended to destroy all forms of life, not just microorganisms. Disinfectants work by destroying the cell wall of microbes or interfering with their metabolism. It is also a form of decontamination, and can be defined as the process whereby physical or chemical methods are used to reduce the amount of pathogenic microorganisms on a surface.

The telluride ion is the anion Te2− and its derivatives. It is analogous to the other chalcogenide anions, the lighter O2−, S2−, and Se2−, and the heavier Po2−.

Cadmium telluride Semiconductor chemical compound used in solar cells

Cadmium telluride (CdTe) is a stable crystalline compound formed from cadmium and tellurium. It is mainly used as the semiconducting material in cadmium telluride photovoltaics and an infrared optical window. It is usually sandwiched with cadmium sulfide to form a p–n junction solar PV cell.

Tellurium dioxide Chemical compound

Tellurium dioxide (TeO2) is a solid oxide of tellurium. It is encountered in two different forms, the yellow orthorhombic mineral tellurite, β-TeO2, and the synthetic, colourless tetragonal (paratellurite), α-TeO2. Most of the information regarding reaction chemistry has been obtained in studies involving paratellurite, α-TeO2.

Tellurite (ion) Ion

The tellurite ion is TeO2−
3
. A tellurite (compound), for example sodium tellurite, is a compound that contains this ion. They are typically colorless or white salts, which in some ways are comparable to sulfite. A mineral with the formula TeO2 is called tellurite.

Sodium tellurite Chemical compound

Sodium tellurite is an inorganic tellurium compound with formula Na2TeO3. It is a water-soluble white solid and a weak reducing agent. Sodium tellurite is an intermediate in the extraction of the element, tellurium; it is a product obtained from anode slimes and is a precursor to tellurium.

Metalorganic vapour-phase epitaxy Method of producing thin fils (polycrystalline and single crystal)

Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), is a chemical vapour deposition method used to produce single- or polycrystalline thin films. It is a process for growing crystalline layers to create complex semiconductor multilayer structures. In contrast to molecular-beam epitaxy (MBE), the growth of crystals is by chemical reaction and not physical deposition. This takes place not in vacuum, but from the gas phase at moderate pressures. As such, this technique is preferred for the formation of devices incorporating thermodynamically metastable alloys, and it has become a major process in the manufacture of optoelectronics, such as Light-emitting diodes. It was invented in 1968 at North American Aviation Science Center by Harold M. Manasevit.

Mercury telluride Topologically insulating chemical compound

Mercury telluride (HgTe) is a binary chemical compound of mercury and tellurium. It is a semi-metal related to the II-VI group of semiconductor materials. Alternative names are mercuric telluride and mercury(II) telluride.

Gallium(III) telluride (Ga2Te3) is a chemical compound classified as a metal telluride. At room temperature gallium(III) telluride is an odorless, black, brittle crystalline solid and is a semiconductor of the III-VI type that crystallizes in a lattice structure.

Gallium(II) telluride Chemical compound

Gallium(II) telluride, GaTe, is a chemical compound of gallium and tellurium. There is research interest in the structure and electronic properties of GaTe because of the possibility that it, or related compounds, may have applications in the electronics industry. Gallium telluride can be made by reacting the elements or by metal organic vapour deposition (MOCVD). . GaTe produced from the elements has a monoclinic crystal structure. Each gallium atom is tetrahedrally coordinated by 3 tellurium and one gallium atom. The gallium-gallium bond length in the Ga2 unit is 2.43 Angstrom. The structure consists of layers and can be formulated as Ga24+ 2Te2−. The bonding within the layers is ionic-covalent and between the layers is predominantly van der Waals. GaTe is classified as a layered semiconductor (like GaSe and InSe which have similar structures). It is a direct band gap semiconductor with an energy of 1.65eV at room temperature. A hexagonal form can be produced by low pressure metal organic vapour deposition (MOCVD) from alkyl gallium telluride cubane-type clusters e.g. from (t-butylGa( μ3-Te))4. The core consists of a cube of eight atoms, four gallium, and four tellurium atoms. Each gallium has an attached t-butyl group and three adjacent tellurium atoms and each tellurium has three adjacent gallium atoms. The hexagonal form, which is closely related to the monoclinic form, containing Ga24+ units, converts to the monoclinic form when annealed at 500 °C.

Organotellurium chemistry describes the synthesis and properties of chemical compounds containing a carbon-tellurium chemical bond. Organotellurium chemistry is a lightly studied area, in part because of the few applications.

Cadmium telluride photovoltaics Type of solar power cell

Cadmium telluride (CdTe) photovoltaics is a photovoltaic (PV) technology based on the use of cadmium telluride in a thin semiconductor layer designed to absorb and convert sunlight into electricity. Cadmium telluride PV is the only thin film technology with lower costs than conventional solar cells made of crystalline silicon in multi-kilowatt systems.

Tellurium dichloride Chemical compound

Tellurium dichloride is a chloride of tellurium with the chemical formula TeCl2.

Tellurite methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:tellurite methyltransferase. This enzyme catalyses the following chemical reaction

Molybdenum ditelluride Chemical compound

Molybdenum(IV) telluride, molybdenum ditelluride or just molybdenum telluride is a compound of molybdenum and tellurium with formula MoTe2, corresponding to a mass percentage of 27.32% molybdenum and 72.68% tellurium. It can crystallise in two dimensional sheets which can be thinned down to monolayers that are flexible and almost transparent. It is a semiconductor, and can fluoresce. It is part of a class of materials called transition metal dichalcogenides. As a semiconductor the band gap lies in the infrared region. This raises the potential use as a semiconductor in electronics or an infrared detector.

References

  1. "dimethyl telluride (CHEBI:4613)". Chemical Entities of Biological Interest (ChEBI). UK: European Bioinformatics Institute. 25 September 2006. IUPAC Names. Retrieved 19 September 2011.
  2. Tunnicliffe, J.; Irvine, S. J. C.; Dosser, O. D.; Mullin, J. B. (1984). "A new MOVPE technique for the growth of highly uniform CMT". Journal of Crystal Growth. 68 (1): 245–253. Bibcode:1984JCrGr..68..245T. doi:10.1016/0022-0248(84)90423-8.
  3. Singh, H. B.; Sudha, N. (1996). "Organotellurium precursors for metal organic chemical vapour deposition (MOCVD) of mercury cadmium telluride (MCT)". Polyhedron . 15 (5–6): 745–763. doi:10.1016/0277-5387(95)00249-X.
  4. Bird, M. L.; Challenger, F. (1939). "Formation of organometalloidal and similar compounds by microorganisms. VII. Dimethyl telluride". Journal of the Chemical Society . 1939: 163–168. doi:10.1039/JR9390000163.
  5. Basnayake, R. S. T.; Bius, J. H.; Akpolat, O. M.; Chasteen, T. G. (2001). "Production of dimethyl telluride and elemental tellurium by bacteria amended with tellurite or tellurate". Applied Organometallic Chemistry . 15 (6): 499–510. doi:10.1002/aoc.186.
  6. Chasteen, T. G.; Bentley, R. (2003). "Biomethylation of Selenium and Tellurium: Microorganisms and Plants". Chemical Reviews . 103 (1): 1–26. doi:10.1021/cr010210+. PMID   12517179.