Europium(III) telluride

Last updated
Europium(III) telluride
2.svg Eu3+.svg 3.svg Telluride ion.png
Identifiers
3D model (JSmol)
  • InChI=1S/2Eu.3Te/q2*+3;3*-2
    Key: ZJYRIAUVAHYSPF-UHFFFAOYSA-N
  • [Eu+3].[Eu+3].[Te-2].[Te-2].[Te-2]
Properties
Eu2Te3
Molar mass 686.73 g·mol−1
Appearancegrey [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Europium(III) telluride is an inorganic compound, one of the tellurides of europium, with the chemical formula Eu2Te3. In this compound, Eu is in the +3 oxidation state. [2] It can form cubic crystals. [3] It has limited solubility in lead telluride and forms a solid solution. [4]

Related Research Articles

<span class="mw-page-title-main">Europium</span> Chemical element, symbol Eu and atomic number 63

Europium is a chemical element; it has symbol Eu and atomic number 63. Europium is a silvery-white metal of the lanthanide series that reacts readily with air to form a dark oxide coating. It is the most chemically reactive, least dense, and softest of the lanthanide elements. It is soft enough to be cut with a knife. Europium was isolated in 1901 and named after the continent of Europe. Europium usually assumes the oxidation state +3, like other members of the lanthanide series, but compounds having oxidation state +2 are also common. All europium compounds with oxidation state +2 are slightly reducing. Europium has no significant biological role and is relatively non-toxic compared to other heavy metals. Most applications of europium exploit the phosphorescence of europium compounds. Europium is one of the rarest of the rare-earth elements on Earth.

<span class="mw-page-title-main">Gadolinium</span> Chemical element, symbol Gd and atomic number 64

Gadolinium is a chemical element; it has symbol Gd and atomic number 64. Gadolinium is a silvery-white metal when oxidation is removed. It is a malleable and ductile rare-earth element. Gadolinium reacts with atmospheric oxygen or moisture slowly to form a black coating. Gadolinium below its Curie point of 20 °C (68 °F) is ferromagnetic, with an attraction to a magnetic field higher than that of nickel. Above this temperature it is the most paramagnetic element. It is found in nature only in an oxidized form. When separated, it usually has impurities of the other rare-earths because of their similar chemical properties.

The lanthanide or lanthanoid series of chemical elements comprises the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. Lutetium is also sometimes considered a lanthanide, despite being a d-block element and a transition metal. These elements are often collectively known as the rare-earth elements or rare-earth metals.

<span class="mw-page-title-main">Samarium</span> Chemical element, symbol Sm and atomic number 62

Samarium is a chemical element; it has symbol Sm and atomic number 62. It is a moderately hard silvery metal that slowly oxidizes in air. Being a typical member of the lanthanide series, samarium usually has the oxidation state +3. Compounds of samarium(II) are also known, most notably the monoxide SmO, monochalcogenides SmS, SmSe and SmTe, as well as samarium(II) iodide.

<span class="mw-page-title-main">Tellurium</span> Chemical element, symbol Te and atomic number 52

Tellurium is a chemical element; it has symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally found in its native form as elemental crystals. Tellurium is far more common in the Universe as a whole than on Earth. Its extreme rarity in the Earth's crust, comparable to that of platinum, is due partly to its formation of a volatile hydride that caused tellurium to be lost to space as a gas during the hot nebular formation of Earth.

<span class="mw-page-title-main">Cubic crystal system</span> Crystallographic system where the unit cell is in the shape of a cube

In crystallography, the cubiccrystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.

<span class="mw-page-title-main">Europium(III) chloride</span> Chemical compound

Europium(III) chloride is an inorganic compound with the formula EuCl3. The anhydrous compound is a yellow solid. Being hygroscopic it rapidly absorbs water to form a white crystalline hexahydrate, EuCl3·6H2O, which is colourless. The compound is used in research.

<span class="mw-page-title-main">Zinc telluride</span> Chemical compound

Zinc telluride is a binary chemical compound with the formula ZnTe. This solid is a semiconductor material with a direct band gap of 2.26 eV. It is usually a p-type semiconductor. Its crystal structure is cubic, like that for sphalerite and diamond.

<span class="mw-page-title-main">Hydrogen telluride</span> Chemical compound

Hydrogen telluride is the inorganic compound with the formula H2Te. A hydrogen chalcogenide and the simplest hydride of tellurium, it is a colorless gas. Although unstable in ambient air, the gas can exist at very low concentrations long enough to be readily detected by the odour of rotting garlic at extremely low concentrations; or by the revolting odour of rotting leeks at somewhat higher concentrations. Most compounds with Te–H bonds (tellurols) are unstable with respect to loss of H2. H2Te is chemically and structurally similar to hydrogen selenide, both are acidic. The H–Te–H angle is about 90°. Volatile tellurium compounds often have unpleasant odours, reminiscent of decayed leeks or garlic.

<span class="mw-page-title-main">Antimony telluride</span> Chemical compound

Antimony telluride is an inorganic compound with the chemical formula Sb2Te3. As is true of other pnictogen chalcogenide layered materials, it is a grey crystalline solid with layered structure. Layers consist of two atomic sheets of antimony and three atomic sheets of tellurium and are held together by weak van der Waals forces. Sb2Te3 is a narrow-gap semiconductor with a band gap 0.21 eV; it is also a topological insulator, and thus exhibits thickness-dependent physical properties.

<span class="mw-page-title-main">Polonide</span> Chemical compound

A polonide is a chemical compound of the radioactive element polonium with any element less electronegative than polonium. Polonides are usually prepared by a direct reaction between the elements at temperatures of around 300–400 °C. They are amongst the most chemically stable compounds of polonium, and can be divided into two broad groups:

Europium(II) fluoride is an inorganic compound with a chemical formula EuF2. It was first synthesized in 1937.

<span class="mw-page-title-main">Potassium telluride</span> Chemical compound

Potassium telluride is an inorganic compound with a chemical formula K2Te. It is formed from potassium and tellurium, making it a telluride. Potassium telluride is a white powder. Like rubidium telluride and caesium telluride, it can be used as an ultraviolet detector in space. Its crystal structure is similar to other tellurides, which have an anti-fluorite structure.

<span class="mw-page-title-main">Europium(III) hydroxide</span> Chemical compound

Europium(III) hydroxide is an inorganic compound with a chemical formula Eu(OH)3.

<span class="mw-page-title-main">Europium(II) oxide</span> Chemical compound

Europium(II) oxide (EuO) is a chemical compound which is one of the oxides of europium. In addition to europium(II) oxide, there is also europium(III) oxide and the mixed valence europium(II,III) oxide.

Tellurogallates are chemical compounds which contain anionic units of tellurium connected to gallium. They can be considered as gallates where tellurium substitutes for oxygen. Similar compounds include the thiogallates, selenogallates, telluroaluminates, telluroindates and thiostannates. They are in the category of chalcogenotrielates or more broadly tellurometallates or chalcogenometallates.

<span class="mw-page-title-main">Europium compounds</span> Compounds with at least one europium atom

Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.

Europium(III) iodide is an inorganic compound containing europium and iodine with the chemical formula EuI3.

<span class="mw-page-title-main">Europium(II) telluride</span> Chemical compound

Europium(II) telluride is an inorganic compound of europium and tellurium, with the chemical formula EuTe.

References

  1. Pierre Villars; Karin Cenzual; Roman Gladyshevskii. Handbook of Inorganic Substances 2017. Walter de Gruyter GmbH & Co KG. 24 July 2017. ISBN 978-3-11-043655-6. "Eu-Te"
  2. Dziawa P, Taliashvili B, Domuchowski W, et al. (Eu, Gd) Te-MBE growth and characterization. Acta Physica Polonica A, 2004, 106(2): 215-221. (pdf)
  3. Dziawa P, Taliashvili B, Domuchowski W, et al. (Eu, Gd) Te-MBE growth and characterization. Acta Physica Polonica A, 2004, 106(2): 215-221. (pdf)
  4. Фреїк Д М, Михайльонка Р Я, Іванишин І М. Термоелектричні властивості і дефектна підсистема твердих розчинів PbTe-Eu2Te3(in Ukrainian). Фізика і хімія твердого тіла, 2001, 2(4): 637-642. (pdf)

External reading