Europium(III) phosphate

Last updated
Europium(III) phosphate
Eu3+.svg Phosphat-Ion.svg
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.532 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 236-901-2
  • hydrate:693-463-9
PubChem CID
  • InChI=1S/Eu.H3O4P/c;1-5(2,3)4/h;(H3,1,2,3,4)/p-3
    Key: VTZYNNDLDPSINP-UHFFFAOYSA-K
  • hydrate:InChI=1S/Eu.H3O4P.H2O/c;1-5(2,3)4;/h;(H3,1,2,3,4);1H2/q+3;;/p-3
    Key: BOCFVANIXFYKBV-UHFFFAOYSA-K
  • [O-]P(=O)I([O-])[O-].[Eu+3]
  • hydrate:[O-]P(=O)I([O-])[O-].[Eu+3].O
  • dihydrate:[O-]P(=O)I([O-])[O-].[Eu+3].O.O
  • trihydrate:[O-]P(=O)I([O-])[O-].[Eu+3].O.O.O
Properties
EuO4P
Molar mass 246.934 g·mol−1
Appearancecolourless solid [1]
Density 5.81 g·cm−3 [2]
Melting point 2,200 °C (3,990 °F; 2,470 K) [3]
insoluble [4]
Structure [2]
Monazite
P21/n (No. 14)
a = 668.13(10), b = 686.18(9), c =  634.91(8) pm
α = 90°, β =  103.96(1)°, γ = 90°
Thermochemistry
111.5 J/mol·K [5] [6]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Europium(III) phosphate is one of the phosphates of europium, with the chemical formula of EuPO4. Other phosphates include europium(II) phosphate (Eu3(PO4)2) and europium(II,III) phosphate (Eu3Eu(PO4)3). [7]

Contents

Preparation

Europium phosphate can be produced by the sol-gel method of europium(III) oxide. First, europium(III) oxide was dissolved in an equimolar amount of nitric acid, and then an excess of 10% phosphoric acid was added. The process also requires the addition of ammonia to adjust the pH to 4 and form a gel, which is then washed with water and heated to 1200 °C for a day. [5] [6]

Properties

Europium(III) phosphate is isotypic to CePO4 and crystallizes in the monazite structure type, in the space group P21/n (no. 14, position 2) with the lattice parameters a = 668.13(10), b = 686.18(9), c = 634.91(8) pm and β = 103.96(1)° with four formula units per unit cell. [2] Its heat capacity is 111.5 J·K−1·mol−1 at 298.15 K, [5] [6] and its bulk modulus is 159(2) GPa. [8]

Related Research Articles

<span class="mw-page-title-main">Europium</span> Chemical element, symbol Eu and atomic number 63

Europium is a chemical element; it has symbol Eu and atomic number 63. Europium is a silvery-white metal of the lanthanide series that reacts readily with air to form a dark oxide coating. It is the most chemically reactive, least dense, and softest of the lanthanide elements. It is soft enough to be cut with a knife. Europium was isolated in 1901 and named after the continent of Europe. Europium usually assumes the oxidation state +3, like other members of the lanthanide series, but compounds having oxidation state +2 are also common. All europium compounds with oxidation state +2 are slightly reducing. Europium has no significant biological role and is relatively non-toxic compared to other heavy metals. Most applications of europium exploit the phosphorescence of europium compounds. Europium is one of the rarest of the rare-earth elements on Earth.

<span class="mw-page-title-main">Lanthanum</span> Chemical element, symbol La and atomic number 57

Lanthanum is a chemical element; it has symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between lanthanum and lutetium in the periodic table, of which lanthanum is the first and the prototype. Lanthanum is traditionally counted among the rare earth elements. Like most other rare earth elements, the usual oxidation state is +3, although some compounds are known with an oxidation state of +2. Lanthanum has no biological role in humans but is essential to some bacteria. It is not particularly toxic to humans but does show some antimicrobial activity.

<span class="mw-page-title-main">Monazite</span> Mineral containing rare-earth elements

Monazite is a primarily reddish-brown phosphate mineral that contains rare-earth elements. Due to variability in composition, monazite is considered a group of minerals. The most common species of the group is monazite-(Ce), that is, the cerium-dominant member of the group. It occurs usually in small isolated crystals. It has a hardness of 5.0 to 5.5 on the Mohs scale of mineral hardness and is relatively dense, about 4.6 to 5.7 g/cm3. There are five different most common species of monazite, depending on the relative amounts of the rare earth elements in the mineral:

<span class="mw-page-title-main">Bastnäsite</span> Family of minerals

The mineral bastnäsite (or bastnaesite) is one of a family of three carbonate-fluoride minerals, which includes bastnäsite-(Ce) with a formula of (Ce, La)CO3F, bastnäsite-(La) with a formula of (La, Ce)CO3F, and bastnäsite-(Y) with a formula of (Y, Ce)CO3F. Some of the bastnäsites contain OH instead of F and receive the name of hydroxylbastnasite. Most bastnäsite is bastnäsite-(Ce), and cerium is by far the most common of the rare earths in this class of minerals. Bastnäsite and the phosphate mineral monazite are the two largest sources of cerium and other rare-earth elements.

<span class="mw-page-title-main">Tricalcium phosphate</span> Chemical compound

Tricalcium phosphate (sometimes abbreviated TCP), more commonly known as Calcium phosphate, is a calcium salt of phosphoric acid with the chemical formula Ca3(PO4)2. It is also known as tribasic calcium phosphate and bone phosphate of lime (BPL). It is a white solid of low solubility. Most commercial samples of "tricalcium phosphate" are in fact hydroxyapatite.

<span class="mw-page-title-main">Iron(III) phosphate</span> Chemical compound

Iron(III) phosphate, also ferric phosphate, is the inorganic compound with the formula FePO4. Four polymorphs of anhydrous FePO4 are known. Additionally two polymorphs of the dihydrate FePO4·(H2O)2 are known. These materials have attracted much interest as potential cathode materials in batteries.

<span class="mw-page-title-main">Lithium iron phosphate</span> Chemical compound

Lithium iron phosphate or lithium ferro-phosphate (LFP) is an inorganic compound with the formula LiFePO
4
. It is a gray, red-grey, brown or black solid that is insoluble in water. The material has attracted attention as a component of lithium iron phosphate batteries, a type of Li-ion battery. This battery chemistry is targeted for use in power tools, electric vehicles, solar energy installations and more recently large grid-scale energy storage.

<span class="mw-page-title-main">Yttrium</span> Chemical element, symbol Y and atomic number 39

Yttrium is a chemical element; it has symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". Yttrium is almost always found in combination with lanthanide elements in rare-earth minerals and is never found in nature as a free element. 89Y is the only stable isotope and the only isotope found in the Earth's crust.

Langbeinites are a family of crystalline substances based on the structure of langbeinite with general formula M2M'2(SO4)3, where M is a large univalent cation, and M' is a small divalent cation. The sulfate group, SO2−4, can be substituted by other tetrahedral anions with a double negative charge such as tetrafluoroberyllate, selenate, chromate, molybdate, or tungstates. Although monofluorophosphates are predicted, they have not been described. By redistributing charges other anions with the same shape such as phosphate also form langbeinite structures. In these the M' atom must have a greater charge to balance the extra three negative charges.

<span class="mw-page-title-main">Cobalt(II) phosphate</span> Chemical compound

Cobalt phosphate is the inorganic compound with the formula Co3(PO4)2. It is a commercial inorganic pigment known as cobalt violet. Thin films of this material are water oxidation catalysts.

<span class="mw-page-title-main">Chromium(III) phosphate</span> Chemical compound

Chromium(III) phosphate describes inorganic compounds with the chemical formula CrPO4·(H2O)n, where n = 0, 4, or 6. All are deeply colored solids. Anhydrous CrPO4 is green. The hexahydrate CrPO4·6H2O is violet.

Vanadium phosphates are inorganic compounds with the formula VOxPO4 as well related hydrates with the formula VOxPO4(H2O)n. Some of these compounds are used commercially as catalysts for oxidation reactions.

<span class="mw-page-title-main">Terbium(III) nitrate</span> Chemical compound

Terbium(III) nitrate is an inorganic chemical compound, a salt of terbium and nitric acid, with the formula Tb(NO3)3. The hexahydrate crystallizes as triclinic colorless crystals with the formula [Tb(NO3)3(H2O)4]·2H2O. It can be used to synthesize materials with green emission.

<span class="mw-page-title-main">Lithium aluminium germanium phosphate</span> Chemical compound

Lithium aluminium germanium phosphate, typically known with the acronyms LAGP or LAGPO, is an inorganic ceramic solid material whose general formula is Li
1+x
Al
x
Ge
2-x
(PO
4
)
3
. LAGP belongs to the NASICON family of solid conductors and has been applied as a solid electrolyte in all-solid-state lithium-ion batteries. Typical values of ionic conductivity in LAGP at room temperature are in the range of 10–5 - 10–4 S/cm, even if the actual value of conductivity is strongly affected by stoichiometry, microstructure, and synthesis conditions. Compared to lithium aluminium titanium phosphate (LATP), which is another phosphate-based lithium solid conductor, the absence of titanium in LAGP improves its stability towards lithium metal. In addition, phosphate-based solid electrolytes have superior stability against moisture and oxygen compared to sulfide-based electrolytes like Li
10
GeP
2
S
12
(LGPS) and can be handled safely in air, thus simplifying the manufacture process. Since the best performances are encountered when the stoichiometric value of x is 0.5, the acronym LAGP usually indicates the particular composition of Li
1.5
Al
0.5
Ge
1.5
(PO
4
)
3
, which is also the typically used material in battery applications.

<span class="mw-page-title-main">Europium(III) acetate</span> Chemical compound

Europium(III) acetate is an inorganic salt of europium and acetic acid with the chemical formula of Eu(CH3COO)3. In this compound, europium exhibits the +3 oxidation state. It can exist in the anhydrous form, sesquihydrate and tetrahydrate. Its hydrate molecule is a dimer.

The phosphate sulfates are mixed anion compounds containing both phosphate and sulfate ions. Related compounds include the arsenate sulfates, phosphate selenates, and arsenate selenates.

<span class="mw-page-title-main">Europium compounds</span> Chemical compounds

Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.

<span class="mw-page-title-main">Terbium compounds</span> Chemical compounds with at least one terbium atom

Terbium compounds are compounds formed by the lanthanide metal terbium (Tb). Terbium generally exhibits the +3 oxidation state in these compounds, such as in TbCl3, Tb(NO3)3 and Tb(CH3COO)3. Compounds with terbium in the +4 oxidation state are also known, such as TbO2 and BaTbF6. Terbium can also form compounds in the 0, +1 and +2 oxidation states.

Europium(III) iodide is an inorganic compound containing europium and iodine with the chemical formula EuI3.

<span class="mw-page-title-main">Dysprosium(III) phosphate</span> Chemical compound

Dysprosium(III) phosphate is an inorganic compound with the chemical formula DyPO4.

References

  1. Macintyre, J. E.; Chapman and Hall (1992). Dictionary of inorganic compounds. London: Chapman & Hall. p. 3124. ISBN   0-412-30120-2. OCLC   26338506.
  2. 1 2 3 Ni, Yunxiang; Hughes, John M.; Mariano, Anthony N. (1995-02-01). "Crystal chemistry of the monazite and xenotime structures". American Mineralogist. Mineralogical Society of America. 80 (1–2): 21–26. Bibcode:1995AmMin..80...21N. doi:10.2138/am-1995-1-203. ISSN   0003-004X. S2CID   55776047.
  3. Hughes, John M.; Kohn, Matthew J.; Rakovan, John (2018). Phosphates : Geochemical, Geobiological and Materials Importance. Berlin. p. 91. ISBN   978-1-5015-0963-6. OCLC   1083603252.{{cite book}}: CS1 maint: location missing publisher (link)
  4. "Europium Phosphate – ProChem, Inc". prochemonline.com. Archived from the original on 2021-06-22. Retrieved 2022-06-08.
  5. 1 2 3 Popa, K.; Konings, R.J.M. (2006). "High-temperature heat capacities of EuPO4 and SmPO4 synthetic monazites". Thermochimica Acta. Elsevier BV. 445 (1): 49–52. doi:10.1016/j.tca.2006.03.023. ISSN   0040-6031.
  6. 1 2 3 Gavrichev, K. S.; Ryumin, M. A.; Tyurin, A. V.; Gurevich, V. M.; Komissarova, L. N. (2009). "The heat capacity and thermodynamic functions of EuPO4 over the temperature range 0–1600 K". Russian Journal of Physical Chemistry A. Pleiades Publishing Ltd. 83 (6): 901–906. Bibcode:2009RJPCA..83..901G. doi:10.1134/s0036024409060053. ISSN   0036-0244. S2CID   98200684.
  7. Grunwald, Waldemar; Wittich, Knut; Glaum, Robert (2018-08-06). "Anhydrous Europium Phosphates: A Comprehensive Report on Syntheses, Crystal Structures, and Phase Relations". Zeitschrift für anorganische und allgemeine Chemie. Wiley. 644 (22): 1403–1414. doi:10.1002/zaac.201800193. ISSN   0044-2313. S2CID   104565178.
  8. Lacomba-Perales, R.; Errandonea, D.; Meng, Y.; Bettinelli, M. (2010-02-24). "High-pressure stability and compressibility of A PO 4 ( A = La , Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation". Physical Review B. 81 (6): 064113. arXiv: 0911.5669 . doi:10.1103/PhysRevB.81.064113. ISSN   1098-0121. S2CID   119249866.