EuFOD

Last updated
EuFOD
Eufod.png
EuFOD 3D ball.png
Names
Other names
Eu(fod)3; Sievers' Reagent; Tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato)europium
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.037.817 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 241-616-1
PubChem CID
  • InChI=1S/3C10H11F7O2.Eu/c3*1-7(2,3)5(18)4-6(19)8(11,12)9(13,14)10(15,16)17;/h3*4,18H,1-3H3;/b3*5-4-;
    Key: UDXLMYFGTHAWDC-VNGPFPIXSA-N
  • FC(F)(F)C(F)(F)C(F)(F)c(=[o+]0)cc(C(C)(C)C)o[Eu-3]012(oc(C(C)(C)C)cc(C(F)(F)C(F)(F)C(F)(F)F)=[o+]1)oc(C(C)(C)C)cc(C(F)(F)C(F)(F)C(F)(F)F)=[o+]2
Properties
C30H30EuF21O6
Molar mass 1037.49 g/mol
AppearanceYellow powder
Melting point 203 to 207 °C (397 to 405 °F; 476 to 480 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

EuFOD is the chemical compound with the formula Eu(OCC(CH3)3CHCOC3F7)3, also called Eu(fod)3. This coordination compound is used primarily as a shift reagent in NMR spectroscopy. It is the premier member of the lanthanide shift reagents and was popular in the 1970s and 1980s.

Contents

Structure and reactivity

Eu(fod)3 consists of three bidentate ligands bound to a Eu(III) center. The metal atom has an electron configuration of f6. The six electrons are unpaired—each in a different singly-occupied f-orbital—which makes the molecule highly paramagnetic. In contrast, Gd(fod)3 with a symmetrical f7 configuration, does not give rise to pseudocontact shifts. The complex is a Lewis acid, being capable of expanding its coordination number of six to eight. The complex displays a particular affinity for "hard" Lewis bases, such as the oxygen atom in ethers and the nitrogen of amines. It is soluble in nonpolar solvents, even more so than related complexes of acetylacetone and hexafluoroacetylacetone.

The fod ligand is the anion of the commercially available 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione. It is a bidentate acetylacetonate ligand prepared from heptafluorobutyric acid (PFBA). It chelates with lanthanides to form Ln(fod)3 for La = Nd, Sm, Eu, Tb, and Lu. [1]

Uses

NMR shift reagent

In its original application, Eu(fod)3 was used in NMR spectroscopy to gain additional chemical shift dispersion. As is typical in paramagnetic NMR spectroscopy, the paramagnetic compound induces an additional chemical shift in the protons near those Lewis basic sites that bind to Eu(fod)3. Only small amounts of shift reagents are used, because otherwise the paramagnetism of the reagent shortens the spin-lattice relaxation times of the nuclei, which causes uncertainty broadening and loss of resolution. The availability of higher magnetic field spectrometers has lowered the demand for NMR shift reagents.

The original shift reagent was Eu(DPM)3, [2] [3] also called Eu(thd)3. [4] Its structure is similar to EuFOD, but with tert-butyl groups in place of heptafluoropropyl substituents. That is, DPM is the conjugate base derived from dipivaloylmethane, also known as 2,2,6,6-tetramethylheptane-3,5-dione. The ligand fod is more lipophilic and by virtue of the perfluoralkyl substituent, its complexes are more Lewis acidic than those derived from DPM. [4]

Lewis acid

Eu(fod)3 serves as a Lewis acid catalyst in organic synthesis including stereoselective Diels-Alder and aldol addition reactions. For example, Eu(fod)3 catalyzes the cyclocondensations of substituted dienes with aromatic and aliphatic aldehydes to yield dihydropyrans, with high selectivity for the endo product. [5]

See also

Related Research Articles

Inorganic chemistry Field of chemistry

Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.

An ylide or ylid is a neutral dipolar molecule containing a formally negatively charged atom (usually a carbanion) directly attached to a heteroatom with a formal positive charge (usually nitrogen, phosphorus or sulfur), and in which both atoms have full octets of electrons. The result can be viewed as a structure in which two adjacent atoms are connected by both a covalent and an ionic bond; normally written X+–Y. Ylides are thus 1,2-dipolar compounds, and a subclass of zwitterions. They appear in organic chemistry as reagents or reactive intermediates.

Organolithium reagent

Organolithium reagents are organometallic compounds that contain carbon–lithium bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation. Organolithium reagents are used in industry as an initiator for anionic polymerization, which leads to the production of various elastomers. They have also been applied in asymmetric synthesis in the pharmaceutical industry. Due to the large difference in electronegativity between the carbon atom and the lithium atom, the C−Li bond is highly ionic. Owing to the polar nature of the C−Li bond, organolithium reagents are good nucleophiles and strong bases. For laboratory organic synthesis, many organolithium reagents are commercially available in solution form. These reagents are highly reactive, and are sometimes pyrophoric.

Acetylacetone Chemical compound

Acetylacetone is an organic compound with the chemical formula CH3COCH2COCH3. It is a colorless liquid, classified as a 1,3-diketone. It exists in equilibrium with a tautomer CH3C(O)CH=(OH)CH3. These tautomers interconvert so rapidly under most conditions that they are treated as a single compound in most applications. It is a colorless liquid that is a precursor to acetylacetonate anion, a bidentate ligand. It is also a building block for the synthesis of heterocyclic compounds.

1,10-Phenanthroline Heterocyclic organic compound

1,10-Phenanthroline (phen) is a heterocyclic organic compound. It is a white solid that is soluble in organic solvents. The 1,10 refer to the location of the nitrogen atoms that replace CH's in the hydrocarbon called phenanthrene.

Gadolinium(III) chloride Chemical compound

Gadolinium(III) chloride, also known as gadolinium trichloride, is GdCl3. It is a colorless, hygroscopic, water-soluble solid. The hexahydrate GdCl3∙6H2O is commonly encountered and is sometimes also called gadolinium trichloride. Gd3+ species are of special interest because the ion has the maximum number of unpaired spins possible, at least for known elements. With seven valence electrons and seven available f-orbitals, all seven electrons are unpaired and symmetrically arranged around the metal. The high magnetism and high symmetry combine to make Gd3+ a useful component in NMR spectroscopy and MRI.

Persistent carbene In organic chemistry, a type of carbene demonstrating particular stability

A persistent carbene (also known as stable carbene) is a type of carbene demonstrating particular stability. The best-known examples and by far largest subgroup are the N-heterocyclic carbenes (NHC) (sometimes called Arduengo carbenes), for example diaminocarbenes with the general formula (R2N)2C:, where the four R moieties are typically alkyl and aryl groups. The groups can be linked to give heterocyclic carbenes, such as those derived from imidazole, imidazoline, thiazole or triazole.

Organophosphorus compounds are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents.

Uranocene, U(C8H8)2, is an organouranium compound composed of a uranium atom sandwiched between two cyclooctatetraenide rings. It was one of the first organoactinide compounds to be synthesized. It is a green air-sensitive solid that dissolves in organic solvents. Uranocene, a member of the "actinocenes," a group of metallocenes incorporating elements from the actinide series. It is the most studied bis[8]annulene-metal system, although it has no known practical applications.

Chiral derivatizing agent

A chiral derivatizing agent (CDA) also known as a chiral resolving reagent, is a chiral auxiliary used to convert a mixture of enantiomers into diastereomers in order to analyze the quantities of each enantiomer present within the mix. Analysis can be conducted by spectroscopy or by chromatography. The use of chiral derivatizing agents has declined with the popularization of chiral HPLC. Besides analysis, chiral derivatization is also used for chiral resolution, the actual physical separation of the enantiomers.

A chiral shift reagent is a reagent used in analytical chemistry for determining the optical purity of a sample. Some analytical techniques such as HPLC and NMR, in their most commons forms, cannot distinguish enantiomers within a sample, but can distinguish diastereomers. Therefore, converting a mixture of enantiomers to a corresponding mixture of diastereomers can allow analysis.

Hexafluoroacetylacetone Chemical compound

Hexafluoroacetylacetone is the chemical compound with the nominal formula CF3C(O)CH2C(O)CF3 (often abbreviated as hfacH). This colourless liquid is a ligand precursor and a reagent used in MOCVD. The compound exists exclusively as the enol CF3C(OH)=CHC(O)CF3. For comparison under the same conditions, acetylacetone is 85% enol.

Transition metal hydrides are chemical compounds containing a transition metal bonded to hydrogen. Most transition metals form hydride complexes and some are significant in various catalytic and synthetic reactions. The term "hydride" is used loosely: some of them are acidic (e.g., H2Fe(CO)4), whereas some others are hydridic, having H-like character (e.g., ZnH2).

In coordination chemistry, a stability constant is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex. There are two main kinds of complex: compounds formed by the interaction of a metal ion with a ligand and supramolecular complexes, such as host–guest complexes and complexes of anions. The stability constant(s) provide(s) the information required to calculate the concentration(s) of the complex(es) in solution. There are many areas of application in chemistry, biology and medicine.

Jeremy Keith Morris Sanders is a British chemist and Emeritus Professor in the Department of Chemistry at the University of Cambridge. He is also Editor-in-Chief of Royal Society Open Science. He is known for his contributions to many fields including NMR spectroscopy and supramolecular chemistry. He served as the Pro-Vice-Chancellor for Institutional Affairs at the University of Cambridge, 2011–2015.

Phosphinidene

Phosphinidenes are low-valent phosphorus compounds analogous to carbenes and nitrenes, having the general structure RP. The "free" form of these compounds is conventionally described as having a singly-coordinated phosphorus atom containing only 6 electrons in its valence level. Most phosphinidenes are highly reactive and short-lived, thereby complicating empirical studies on their chemical properties. In the last few decades, several strategies have been employed to stabilize phosphinidenes, and researchers have developed a number of reagents and systems that can generate and transfer phosphinidenes as reactive intermediates in the synthesis of various organophosphorus compounds.

Metal acetylacetonates are coordination complexes derived from the acetylacetonate anion (CH
3
COCHCOCH
3
) and metal ions, usually transition metals. The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal to form a six-membered chelate ring. The simplest complexes have the formula M(acac)3 and M(acac)2. Mixed-ligand complexes, e.g. VO(acac)2, are also numerous. Variations of acetylacetonate have also been developed with myriad substituents in place of methyl (RCOCHCOR′). Many such complexes are soluble in organic solvents, in contrast to the related metal halides. Because of these properties, acac complexes are sometimes used as catalyst precursors and reagents. Applications include their use as NMR "shift reagents" and as catalysts for organic synthesis, and precursors to industrial hydroformylation catalysts. C
5
H
7
O
2
in some cases also binds to metals through the central carbon atom; this bonding mode is more common for the third-row transition metals such as platinum(II) and iridium(III).

Brookharts acid Chemical compound

Brookhart's acid is the salt of the diethyl ether oxonium ion and tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BAr′4). It is a colorless solid, used as a strong acid. The compound was first reported by Volpe, Grant, and Brookhart in 1992.

Paramagnetic nuclear magnetic resonance spectroscopy Spectroscopy of paramagnetic compounds via NMR

Paramagnetic nuclear magnetic resonance spectroscopy refers to nuclear magnetic resonance (NMR) spectroscopy of paramagnetic compounds. Although most NMR measurements are conducted on diamagnetic compounds, paramagnetic samples are also amenable to analysis and give rise to special effects indicated by a wide chemical shift range and broadened signals. Paramagnetism diminishes the resolution of an NMR spectrum to the extent that coupling is rarely resolved. Nonetheless spectra of paramagnetic compounds provide insight into the bonding and structure of the sample. For example, the broadening of signals is compensated in part by the wide chemical shift range (often 200 ppm in 1H NMR). Since paramagnetism leads to shorter relaxation times (T1), the rate of spectral acquisition can be high.

Lanthanide probes are a non-invasive analytical tool commonly used for biological and chemical applications. Lanthanides are metal ions which have their 4f energy level filled and generally refer to elements cerium to lutetium in the periodic table. The fluorescence of lanthanide salts is weak because the energy absorption of the metallic ion is low; hence chelated complexes of lanthanides are most commonly used. The term chelate derives from the Greek word for “claw,” and is applied to name ligands, which attach to a metal ion with two or more donor atoms through dative bonds. The fluorescence is most intense when the metal ion has the oxidation state of 3+. Not all lanthanide metals can be used and the most common are: Sm(III), Eu(III), Tb(III), and Dy(III).

References

  1. Irfanullah, Mir; Iftikhar, K. (2009). "New dinuclear lanthanide(III) complexes based on 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione and 2,2′-bipyrimidine". Inorg. Chem. Comm. 12 (4): 296–299. doi:10.1016/j.inoche.2009.01.007. ISSN   1387-7003.
  2. Hinckley, Conrad C. (1969). "Paramagnetic shifts in solutions of cholesterol and the dipyridine adduct of trisdipivalomethanatoeuropium(III). A shift reagent". J. Am. Chem. Soc. 91 (18): 5160–5162. doi:10.1021/ja01046a038. ISSN   0002-7863.
  3. Sanders, Jeremy K. M.; Williams, Dudley H. (1972). "Shift Reagents in NMR Spectroscopy". Nature. 240 (5381): 385–390. doi:10.1038/240385a0. ISSN   0028-0836.
  4. 1 2 Sievers, Robert E.; Rondeau, Roger E. (1971). "New superior paramagnetic shift reagents for nuclear magnetic resonance spectral clarification". J. Am. Chem. Soc. 93 (6): 1522–1524. doi:10.1021/ja00735a049. ISSN   0002-7863.
  5. Wenzel, T.J.; Ciak, J.M.; "Europium, tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedianato)" in Encyclopedia of Reagents for Organic Synthesis, 2004. John Wiley & Sons, Ltd. doi : 10.1002/047084289X.rn00449