Thulium acetylacetonate

Last updated
Thulium acetylacetonate
Tm(acac)3(H2O)2.svg
Names
Other names
Thulium(III) acetylacetonate
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/3C5H8O2.Tm/c3*1-4(6)3-5(2)7;/h3*3,6H,1-2H3;/q;;;+3/p-3
    Key: ASFMKHGVRGERPB-UHFFFAOYSA-K
  • trihydrate:InChI=1S/3C5H8O2.3H2O.Tm/c3*1-4(6)3-5(2)7;;;;/h3*3,6H,1-2H3;3*1H2;/q;;;;;;+3/p-3/b3*4-3-;;;;
    Key: UZKSYWPAPWYRSV-VBBOVLQFSA-K
  • CC(=CC(=O)C)[O-].CC(=CC(=O)C)[O-].CC(=CC(=O)C)[O-].[Tm+3]
  • trihydrate:CC(=CC(=O)C)[O-].CC(=CC(=O)C)[O-].CC(=CC(=O)C)[O-].[Tm+3].O.O.O
Properties
C15H21O6Tm
Molar mass 466.261 g·mol−1
Appearancepowder [1]
white powder (trihydrate) [2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Thulium acetylacetonate is a coordination compound with the formula Tm(C5H7O2)3. This anhydrous acetylacetonate complex is often discussed but unlikely to exist per se. The 8-coordinated dihydrate Tm(C5H7O2)3(H2O)2 is a more plausible formula based on the behavior of other lanthanide acetylacetonates. The dihydrate has been characterized by X-ray crystallography. [3] [4] Upon attempted dehydration by heating under vacuum, other hydrated lanthanide tris(acetylacetonate) complexes decompose to give oxo-clusters. [5]

Thulium acetylacetonate can be prepared by the reaction of thulium hydroxide and acetylacetone. [6] Its monohydrate is not volatile. [7] The acetonitrile solution of its dihydrate and the dichloromethane solution of 5-[(4-fluorobenzylidene)amino]-8-hydroxyquinoline (HL) react by heating to obtain the complex [Tm4(acac)6(L)63-OH)2]. [8]

Related Research Articles

<span class="mw-page-title-main">Holmium</span> Chemical element, symbol Ho and atomic number 67

Holmium is a chemical element; it has symbol Ho and atomic number 67. It is a rare-earth element and the eleventh member of the lanthanide series. It is a relatively soft, silvery, fairly corrosion-resistant and malleable metal. Like many other lanthanides, holmium is too reactive to be found in native form, as pure holmium slowly forms a yellowish oxide coating when exposed to air. When isolated, holmium is relatively stable in dry air at room temperature. However, it reacts with water and corrodes readily, and also burns in air when heated.

The lanthanide or lanthanoid series of chemical elements comprises at least the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. In the periodic table, they fill the 4f orbitals. Lutetium is also sometimes considered a lanthanide, despite being a d-block element and a transition metal.

<span class="mw-page-title-main">Thulium</span> Chemical element, symbol Tm and atomic number 69

Thulium is a chemical element; it has symbol Tm and atomic number 69. It is the thirteenth and third-last element in the lanthanide series. Like the other lanthanides, the most common oxidation state is +3, seen in its oxide, halides and other compounds; however, the +2 oxidation state can also be stable. In aqueous solution, like compounds of other late lanthanides, soluble thulium compounds form coordination complexes with nine water molecules.

<span class="mw-page-title-main">Thulium(III) chloride</span> Chemical compound

Thulium(III) chloride or thulium trichloride is as an inorganic salt composed of thulium and chlorine with the formula TmCl3. It forms yellow crystals. Thulium(III) chloride has the YCl3 (AlCl3) layer structure with octahedral thulium ions. It has been used as a starting material for some exotic nanostructures prepared for NIR photocatalysis.

<span class="mw-page-title-main">Dysprosium acetylacetonate</span> Chemical compound

Dysprosium acetylacetonate is a chemical compound of dysprosium with formula Dy(C5H7O2)3(H2O)n.

<span class="mw-page-title-main">Europium acetylacetonate</span> Chemical compound

Europium acetylacetonate is a coordination complex with formula Eu(C5H7O2)3. Although this anhydrous acetylacetonate complex is widel discussed, some sources suggest that it is really the dihydrate Eu(C5H7O2)3(H2O)2.

<span class="mw-page-title-main">Gadolinium acetylacetonate</span> Chemical compound

Gadolinium acetylacetonate is a coordination compound with the formula Gd(C5H7O2)3. This anhydrous acetylacetonate complex is widely discussed but unlikely to exist per se. The 8-coordinated dihydrate Gd(C5H7O2)3(H2O)2 is a more plausible formula based on the behavior of other lathanide complexes. It has also been characterized twice by X-ray crystallography.

<span class="mw-page-title-main">Yttrium oxalate</span> Chemical compound

Yttrium oxalate is an inorganic compound, a salt of yttrium and oxalic acid with the chemical formula Y2(C2O4)3. The compound does not dissolve in water and forms crystalline hydrates—colorless crystals.

<span class="mw-page-title-main">Thulium(III) nitrate</span> Chemical compound

Thulium(III) nitrate is an inorganic compound, a salt of thulium and nitric acid with the chemical formula Tm(NO3)3. The compound forms dark-green crystals, readily soluble in water, also forms crystalline hydrates.

<span class="mw-page-title-main">Neodymium(II) iodide</span> Chemical compound

Neodymium(II) iodide or neodymium diiodide is an inorganic salt of iodine and neodymium the formula NdI2. Neodymium uses the +2 oxidation state in the compound.

<span class="mw-page-title-main">Neodymium(III) acetylacetonate</span> Chemical compound

Neodymium(III) acetylacetonate is a coordination compound with the chemical formula Nd(O2C5H7)3. Although many sources discuss this anhydrous acetylacetonate complex, it is the dihydrate Nd(O2C5H7)3(H2O)2 that has been characterized by X-ray crystallography. It commonly occurs as a white powder. Upon heating under vacuum, other dihydrated lanthanide trisacetylacetonates convert to oxo-clusters M4O(C5H7O2)10. This result suggests that Nd(O2C5H7)3 may not exist.

<span class="mw-page-title-main">Holmium acetylacetonate</span> Chemical compound

Holmium acetylacetonate is a coordination compound with the formula Ho(C5H7O2)3. This anhydrous acetylacetonate complex is often discussed but unlikely to exist per se. The 8-coordinated dihydrate Ho(C5H7O2)3(H2O)2 is a more plausible formula based on the behavior of other lanthanide acetylacetonates. The dihydrate has been characterized by X-ray crystallography.

Erbium compounds are compounds containing the element erbium (Er). These compounds are usually dominated by erbium in the +3 oxidation state, although the +2, +1 and 0 oxidation states have also been reported.

<span class="mw-page-title-main">Yttrium acetylacetonate</span> Chemical compound

Yttrium acetylacetonate is a coordination compound with the chemical formula Y(C5H7O2)3(H2O)x, or Y(acac)3(H2O)x for short. The value of x can vary from 1 to 3.

<span class="mw-page-title-main">Praseodymium acetylacetonate</span> Chemical compound

Praseodymium acetylacetonate is a coordination complex with the formula Pr(C3H7O2)3. This purported anhydrous acetylacetonate complex is widely discussed but only the dihydrate Pr(C3H7O2)3(H2O)2 has been characterized by X-ray crystallography.

<span class="mw-page-title-main">Erbium acetylacetonate</span> Chemical compound


Erbium acetylacetonate is a coordination compound with the formula Er(C5H7O2)3. This anhydrous acetylacetonate complex is often discussed but unlikely to exist per se. The 8-coordinated dihydrate Er(C5H7O2)3(H2O)2 is a more plausible formula based on the behavior of other lanthanide acetylacetonates. The dihydrate has been characterized by X-ray crystallography.

<span class="mw-page-title-main">Lanthanum acetylacetonate</span> Chemical compound

Lanthanum acetylacetonate refers to the coordination complex with the formula La(C5H7O2)3. This anhydrous acetylacetonate complex has not been characterized well, but the dihydrate La(C5H7O2)3(H2O)2 has been characterized by X-ray crystallography.

<span class="mw-page-title-main">Samarium(III) acetylacetonate</span> Chemical compound

Samarium acetylacetonate is a coordination compound with the formula Sm(C5H7O2)3. This anhydrous acetylacetonate complex is widely discussed but unlikely to exist per se. The 8-coordinated dihydrate Sm(C5H7O2)3(H2O)2 is a more plausible formula based on the behavior of other lanthanide acetylacetonates. The dihydrate has been characterized by X-ray crystallography. Upon attempted dehydration by heating under vacuum, other hydrated lanthanide tris(acetylacetonate) complexes decompose to give oxo-clusters.

<span class="mw-page-title-main">Lutetium acetylacetonate</span> Chemical compound

Lutetium acetylacetonate is a coordination compound with the chemical formula Lu(C5H7O2)3, or Lu(acac)3 for short. The complex per se is unlikely to exist, but the dihydrate would be expected based on the behavior of other lanthanide tris(acetylacetonate)s. Consistent with this scenario, It forms adducts Lu(acac)3(phen) and Lu(acac)3(dipy) where phen and bipy are 1,10-phenanthroline and 2,2'-bipyridine, respectively.

<span class="mw-page-title-main">Terbium acetylacetonate</span> Chemical compound


Terbium acetylacetonate is a coordination compound with the formula Tb(C5H7O2)3. This anhydrous acetylacetonate complex is often discussed but unlikely to exist per se. The 8-coordinated dihydrate Tb(C5H7O2)3(H2O)2 is a more plausible formula based on the behavior of other lanthanide acetylacetonates. The dihydrate has been characterized by X-ray crystallography. Upon attempted dehydration by heating under vacuum, other hydrated lanthanide tris(acetylacetonate) complexes decompose to give oxo-clusters. The complex can be prepared from terbium salts, acetylacetone, and a base such as ammonia.

References

  1. Pierson, H.O. (1999). Handbook of Chemical Vapor Deposition: Principles, Technology and Applications. Materials Science and Process Technology. Elsevier Science. p. 92. ISBN   978-0-8155-1743-6. Archived from the original on 2021-10-17. Retrieved 2021-09-16.
  2. Perry, D.L. (2016). Handbook of Inorganic Compounds. CRC Press. p. 494. ISBN   978-1-4398-1462-8. Archived from the original on 2021-09-16. Retrieved 2021-09-16.
  3. Cheng, Shen; Yuguo, Fan; Yutian, Wang; Pinzhe, Lu; Guofa, Liu (1983). Gaodeng Xuexiao Huaxue Xuebao (Chem.J.Chin.Univ.). 4: 769.{{cite journal}}: Missing or empty |title= (help)
  4. Cambridge Crystallographic Data Center, number CCDC 1121251.
  5. Tamang, Sem Raj; Singh, Arpita; Bedi, Deepika; Bazkiaei, Adineh Rezaei; Warner, Audrey A.; Glogau, Keeley; McDonald, Corey; Unruh, Daniel K.; Findlater, Michael (2020). "Polynuclear Lanthanide–Diketonato Clusters for the Catalytic Hydroboration of Carboxamides and Esters". Nat. Catal. 3 (2): 154–162. doi:10.1038/s41929-019-0405-5. S2CID   209897045.
  6. Spencer, J.F. (1919). The Metals of the Rare Earths. Monographs on inorganic and physical chemistry. Longmans, Green. p. 153. Archived from the original on 2021-09-16. Retrieved 2021-09-16.
  7. Friend, J.N. (1917). A Text-book of Inorganic Chemistry. Griffin. p. 438. Archived from the original on 2021-09-16. Retrieved 2021-09-16.
  8. Hong-Ling Gao; Li Jiang; Shuang Liu; Hai-Yun Shen; Wen-Min Wang; Jian-Zhong Cui (2016). "Multiple magnetic relaxation processes, magnetocaloric effect and fluorescence properties of rhombus-shaped tetranuclear rare earth complexes". Dalton Transactions. 45 (1): 253–264. doi:10.1039/C5DT03790E. ISSN   1477-9226. PMID   26600114 . Retrieved 2021-09-20.

External reading