Titanium bis(acetylacetonate)dichloride

Last updated
Titanium bis(acetylacetonate)dichloride
TiCl2(acac)2.png
Names
IUPAC name
(OC-6-2′2)-Dichlorido(2,4-dioxopentan-3-ido-κ2O,O′)titanium
Other names
dichlorobis(2,4-pentanedionato)titanium, dichlorobis(2,4-acetylacetonato)titanium, bis(acetylacetonato)dichlorotitanium
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.037.415 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 241-172-9
PubChem CID
  • InChI=1S/2C5H8O2.2ClH.Ti/c2*1-4(6)3-5(2)7;;;/h2*3,6H,1-2H3;2*1H;/q;;;;+4/p-4/b2*4-3-;;;
    Key: LUDYOTBRNXNKAB-VGKOASNMSA-J
  • ionic form:CC(=CC(=O)C)[O-].CC(=CC(=O)C)[O-].[Cl-].[Cl-].[Ti+4]
  • coordination form:Cl[Ti-2]12(Cl)(OC(C)=CC(C)=[O+]1)OC(C)=CC(C)=[O+]2
Properties
C10H14Cl2O4Ti
Molar mass 316.99 g·mol−1
Appearancered-orange solid
Density 1.514 g/cm3
Melting point 191 °C (376 °F; 464 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Titanium bis(acetylacetonate)dichloride is the coordination complex with the formula Ti(C5H7O2)2Cl2. It is a common acetylacetonate complex of titanium. It is a red-orange solid that hydrolyzes slowly in air. [1]

The complex is prepared by treatment of titanium tetrachloride with excess acetylacetone: [1]

TiCl4 + 2 Hacac → Ti(acac)2Cl2 + 2 HCl

It is an octahedral complex that crystallizes as a racemic mixture of the chiral cis isomers. [2] It is fluxional in solution, as the result of rapid cis–trans equilibrium. [3]

Related Research Articles

Titanium tetrachloride Inorganic chemical compound

Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms thick clouds of titanium dioxide and hydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as "tickle" or "tickle 4" due to the phonetic resemblance of its molecular formula to the word.

McMurry reaction

The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent. The reaction is named after its co-discoverer, John E. McMurry. The McMurry reaction originally involved the use of a mixture TiCl3 and LiAlH4, which produces the active reagents. Related species have been developed involving the combination of TiCl3 or TiCl4 with various other reducing agents, including potassium, zinc, and magnesium. This reaction is related to the Pinacol coupling reaction which also proceeds by reductive coupling of carbonyl compounds.

Titanocene dichloride Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

Tebbes reagent Chemical compound

Tebbe's reagent is the organometallic compound with the formula (C5H5)2TiCH2ClAl(CH3)2. It is used in the methylenation of carbonyl compounds, that is it converts organic compounds containing the R2C=O group into the related R2C=CH2 derivative. It is a red solid that is pyrophoric in the air, and thus is typically handled with air-free techniques. It was originally synthesized by Fred Tebbe at DuPont Central Research.

Titanium(III) chloride is the inorganic compound with the formula TiCl3. At least four distinct species have this formula; additionally hydrated derivatives are known. TiCl3 is one of the most common halides of titanium and is an important catalyst for the manufacture of polyolefins.

Titanium(II) chloride Chemical compound

Titanium(II) chloride is the chemical compound with the formula TiCl2. The black solid has been studied only moderately, probably because of its high reactivity. Ti(II) is a strong reducing agent: it has a high affinity for oxygen and reacts irreversibly with water to produce H2. The usual preparation is the thermal disproportionation of TiCl3 at 500 °C. The reaction is driven by the loss of volatile TiCl4:

Titanium tetrabromide Chemical compound

Titanium tetrabromide is the chemical compound with the formula TiBr4. It is the most volatile transition metal bromide. The properties of TiBr4 are an average of TiCl4 and TiI4. Some key properties of these four-coordinated Ti(IV) species are their high Lewis acidity and their high solubility in nonpolar organic solvents. TiBr4 is diamagnetic, reflecting the d0 configuration of the metal centre.

Titanium tetrafluoride Chemical compound

Titanium(IV) fluoride is the inorganic compound with the formula TiF4. It is a white hygroscopic solid. In contrast to the other tetrahalides of titanium, it adopts a polymeric structure. In common with the other tetrahalides, TiF4 is a strong Lewis acid.

Organotitanium compound

Organotitanium compounds in organometallic chemistry contain carbon-titanium chemical bonds. Organotitanium chemistry is the science of organotitanium compounds describing their physical properties, synthesis and reactions. They are reagents in organic chemistry and are involved in major industrial processes.

In organometallic chemistry, bent metallocenes are a subset of metallocenes. In bent metallocenes, the ring systems coordinated to the metal are not parallel, but are tilted at an angle. A common example of a bent metallocene is Cp2TiCl2. Several reagents and much research is based on bent metallocenes.

Metal acetylacetonates are coordination complexes derived from the acetylacetonate anion (CH
3
COCHCOCH
3
) and metal ions, usually transition metals. The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal to form a six-membered chelate ring. The simplest complexes have the formula M(acac)3 and M(acac)2. Mixed-ligand complexes, e.g. VO(acac)2, are also numerous. Variations of acetylacetonate have also been developed with myriad substituents in place of methyl (RCOCHCOR′). Many such complexes are soluble in organic solvents, in contrast to the related metal halides. Because of these properties, acac complexes are sometimes used as catalyst precursors and reagents. Applications include their use as NMR "shift reagents" and as catalysts for organic synthesis, and precursors to industrial hydroformylation catalysts. C
5
H
7
O
2
in some cases also binds to metals through the central carbon atom; this bonding mode is more common for the third-row transition metals such as platinum(II) and iridium(III).

Titanium ethoxide Chemical compound

Titanium ethoxide is a chemical compound with the formula Ti4(OCH2CH3)16. It is a colorless liquid that is soluble in organic solvents but hydrolyzes readily. It is sold commercially as a colorless solution. Alkoxides of titanium(IV) and zirconium(IV) are used in organic synthesis and materials science. They adopt more complex structures than suggested by their empirical formulas.

Metal halides

Metal halides are compounds between metals and halogens. Some, such as sodium chloride are ionic, while others are covalently bonded. A few metal halides are discrete molecules, such as uranium hexafluoride, but most adopt polymeric structures, such as palladium chloride.

Titanocene pentasulfide Chemical compound

Titanocene pentasulfide is the organotitanium compound with the formula (C5H5)2TiS5, commonly abbreviated as Cp2TiS5. This metallocene exists as a bright red solid that is soluble in organic solvents. It is of academic interest as a precursor to unusual allotropes of elemental sulfur as well as some related inorganic rings.

In organic chemistry, the Keck asymmetric allylation is a chemical reaction that involves the nucleophilic addition of an allyl group to an aldehyde. The catalyst is a chiral complex that contains titanium as a Lewis acid. The chirality of the catalyst induces a stereoselective addition, so the secondary alcohol of the product has a predictable absolute stereochemistry based on the choice of catalyst. This name reaction is named for Gary Keck.

Titanium(IV) nitrate Chemical compound

Titanium nitrate is the inorganic compound with formula Ti(NO3)4. It is a colorless, diamagnetic solid that sublimes readily. It is an unusual example of a volatile binary transition metal nitrate. Ill defined species called titanium nitrate are produced upon dissolution of titanium or its oxides in nitric acid.

Titanium perchlorate Chemical compound

Titanium perchlorate is a molecular compound of titanium and perchlorate groups with formula Ti(ClO4)4. Anhydrous titanium perchlorate decomposes explosively at 130 °C and melts at 85 °C with a slight decomposition. It can sublime in a vacuum as low as 70 °C, and can form vapour at up to 120°. Titanium perchlorate is quite volatile. It has density 2.35. It decomposes to TiO2, ClO2 and dioxygen O2 Also TiO(ClO4)2 is formed during decomposition.

Bis(cyclopentadienyl)titanium(III) chloride Chemical compound

Bis(cyclopentadienyl)titanium(III) chloride, also known as the Nugent–RajanBabu reagent, is the organotitanium compound which exists as a dimer with the formula [(C5H5)2TiCl]2. It is an air sensitive green solid. The complex finds specialized use in synthetic organic chemistry as a single electron reductant.

(Cyclopentadienyl)titanium trichloride Chemical compound

(Cyclopentadienyl)titanium trichloride is an organotitanium compound with the formula (C5H5)TiCl3. It is a moisture sensitive orange solid. The compound adopts a piano stool geometry.

Transition metal dithiocarbamate complexes

Transition metal dithiocarbamate complexes are coordination complexes containing one or more dithiocarbamate ligand, which are typically abbreviated R2dtc. Many complexes are known. Several homoleptic derivatives have the formula M(R2dtc)n where n = 2 and 3.

References

  1. 1 2 Wilkie, C. A.; Lin, G.; Haworth, D. T. (1979). "cis-[Dihalobis(2,4-Pentanedionato)Titanium(IV)] Complexes". Inorg. Synth. 19: 145–148. doi:10.1002/9780470132500.ch33.
  2. Ferguson, George; Glidewell, Christopher (2001). "Enantiomeric disorder in racemic cis-dichlorobis(pentane-2,4-dionato)titanium(IV)". Acta Crystallographica Section C. 57 (3): 264–265. doi: 10.1107/S0108270100019181 . PMID   11250571.
  3. Bradley, D. C.; Holloway, C. E. (1969). "Nuclear magnetic resonance and infrared spectral studies on labile cis-dialkoxy-bis(acetylacetonato)titanium(IV) compounds". J. Chem. Soc. A: 282–285. doi:10.1039/J19690000282. S2CID   97560520.