Copper(II) acetylacetonate

Last updated
Copper(II) acetylacetonate
Palladium(II) acetylacetonate 3D ball.png
Copper(II) acetylacetonate 02.jpg
Names
Other names
  • Bis(2,4-pentanedionato)copper
  • Cupric acetylacetonate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.147 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 236-477-9
PubChem CID
UNII
  • InChI=1S/2C5H8O2.Cu/c2*1-4(6)3-5(2)7;/h2*3,6H,1-2H3;
    Key: ZKXWKVVCCTZOLD-UHFFFAOYSA-N
  • CC(=CC(=O)C)O.CC(=CC(=O)C)O.[Cu]
Properties
Cu(C5H7O2)2
Molar mass 261.764 g·mol−1
Appearanceblue solid
Density 0.721 g/cm3
Melting point 245 °C (473 °F; 518 K) [1] (decomposes)
Boiling point 160 °C (320 °F; 433 K) [1] at 9.8 mmHg
Vapor pressure 0.13 hPa at 163 °C (325 °F; 436 K) [1]
Hazards
GHS labelling: [2]
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340+P312, P305+P351+P338, P332+P313, P337+P313, P362, P403+P233, P405, P501
NFPA 704 (fire diamond)
[1]
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
1
0
250 °C (482 °F; 523 K) [1]
1 mg/m3 [1] (TWA)
Lethal dose or concentration (LD, LC):
NIOSH (US health exposure limits): [1]
REL (Recommended)
1 mg/m3 (TWA) [2]
IDLH (Immediate danger)
100 mg/m3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Copper(II) acetylacetonate is the coordination compound with the formula Cu(C5H7O2)2. It is the homoleptic acetylacetonate complex of copper(II). It is insoluble within water and exists as a bright blue solid. According to X-ray crystallography, the Cu center is square planar. [3] Single crystals of this compound exhibit the unusual property of being highly flexible, allowing the formation of knots. The flexibility is attributed to the nature of the intermolecular forces. [4]

Contents

Synthesis

Copper(II) acetylacetonate may be synthesized by reaction of copper(II) chloride (CuCl2) and acetylacetone in a methanol and water mixture with sodium acetate at >80 °C (176 °F), or by reaction of copper(II) sulfate (CuSO4) with acetylacetone in a sodium hydroxide (NaOH) solution in water at room temperature: [5]

CuCl2 + 2 C5H8O2 → Cu(C5H7O2)2 + 2 HCl
CuSO4 + 2 C5H8O2 → Cu(C5H7O2)2 + H2SO4

Uses

Thermal decomposition of copper(II) acetylacetonate at low pressure and high temperature in a hydrogen / water atmosphere may be used to produce nano-particles of copper(I) oxide (Cu2O) or copper (Cu2) depending on the temperature and pressure parameters. [6]

References

  1. 1 2 3 4 5 6 7 "SDS - Copper(II) acetylacetonate". fishersci.com. Thermo Fisher Scientific. 24 December 2021. Retrieved 3 November 2025.
  2. 1 2 3 Sigma-Aldrich Co., Copper(II) acetylacetonate.
  3. Vreshch, Volodimir D.; Yang, Jen-Hsien; Zhang, Haitao; Filatov, Alexander S.; Dikarev, Evgeny V. (2010). "Monomeric Square-Planar Cobalt(II) Acetylacetonate: Mystery or Mistake?". Inorg. Chem. 49 (18): 8430–8434. doi:10.1021/ic100963r. PMID   20795642.
  4. Brock, Aidan J.; Whittaker, Jacob J.; Powell, Joshua A.; Pfrunder, Michael C.; Grosjean, Arnaud; Parsons, Simon; McMurtrie, John C.; Clegg, Jack K. (2018). "Elastically Flexible Crystals have Disparate Mechanisms of Molecular Movement Induced by Strain and Heat". Angew. Chem. Int. Ed. 57 (35): 11325–11328. doi: 10.1002/anie.201806431 . PMID   29998602.
  5. "Synthesis of copper(II) acetylacetonate" (PDF). educa.fc.up.pt. Educa - Cultura Científica e Ensino/Aprendizagem da Química. 2011. Retrieved 3 November 2025.
  6. Nasibulin, Albert G.; Kauppinen, Esko I.; Brown, David P.; Jokiniemi, Jorma K. (1 November 2001). "Nanoparticle Formation via Copper (II) Acetylacetonate Vapor Decomposition in the Presence of Hydrogen and Water" (PDF). The Journal of Physical Chemistry B. 105 (45): 11067–11075. doi:10.1021/jp0114135 . Retrieved 3 November 2025.