Copper(II) thiocyanate

Last updated
Copper(II) thiocyanate
CuNCS2 cropped.png
Copper(II) thiocyanate
CuNCS2 crystal structure.png
Crystal structure of copper(II) thiocyanate
Names
Other names
Cupric thiocyanate
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/2CHNS.Cu/c2*2-1-3;/h2*3H;/q;;+2/p-2
    Key: BQVVSSAWECGTRN-UHFFFAOYSA-L
  • C(#N)[S-].C(#N)[S-].[Cu+2]
Properties
Cu(SCN)2
Molar mass 179.71 g/mol [1]
Appearanceblack powder
Density 2.47 g/cm3 [1]
Melting point decomposes at 180 C [2]
Insoluble
0.66×10−3 cm3/mol [1]
Related compounds
Other anions
Copper(II) bromide, Copper(II) chloride
Other cations
Copper(I) thiocyanate, Cobalt(II) thiocyanate, Mercury(II) thiocyanate, Ammonium thiocyanate
Potassium thiocyanate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Copper(II) thiocyanate (or cupric thiocyanate) is a coordination polymer with formula Cu(SCN)2. [1] It is a black solid which slowly decomposes in moist air. [2] It was first reported in 1838 by Karl Ernst Claus and its structure was determined first in 2018. [3] [1]

Contents

Structure

The structure of Cu(SCN)2 was determined via powder X-ray diffraction and consists of chains of Cu(NCS)2 linked together by weak Cu–S–Cu bonds into two-dimensional layers. It can be considered a Jahn–Teller distorted analogue of the mercury thiocyanate structure-type. Each copper is octahedrally coordinated by four sulfurs and two nitrogens. The sulfur end of the SCN ligand is doubly bridging. [1]

Synthesis

Copper(II) thiocyanate can be prepared from the reaction of concentrated solutions of copper(II) and a soluble thiocyanate salt in water, precipitating as a black powder. [2] [3] With rapid drying, pure Cu(SCN)2 can be isolated. Reaction at lower concentrations and for longer periods of time generates instead copper(I) thiocyanate. [4]

Magnetism

Copper(II) thiocyanate, like copper(II) bromide and copper(II) chloride, is a quasi low-dimensional antiferromagnet and it orders at 12 K (−261 °C) into a conventional Néel ground state. [1]

Related Research Articles

<span class="mw-page-title-main">Thiocyanate</span> Ion (S=C=N, charge –1)

Thiocyanates are salts containing the thiocyanate anion [SCN]. [SCN] is the conjugate base of thiocyanic acid. Common salts include the colourless salts potassium thiocyanate and sodium thiocyanate. Mercury(II) thiocyanate was formerly used in pyrotechnics.

<span class="mw-page-title-main">Copper(I) chloride</span> Chemical compound

Copper(I) chloride, commonly called cuprous chloride, is the lower chloride of copper, with the formula CuCl. The substance is a white solid sparingly soluble in water, but very soluble in concentrated hydrochloric acid. Impure samples appear green due to the presence of copper(II) chloride (CuCl2).

<span class="mw-page-title-main">Copper(I) iodide</span> Chemical compound

Copper(I) iodide is the inorganic compound with the formula CuI. It is also known as cuprous iodide. It is useful in a variety of applications ranging from organic synthesis to cloud seeding.

<span class="mw-page-title-main">Copper monosulfide</span> Chemical compound

Copper monosulfide is a chemical compound of copper and sulfur. It was initially thought to occur in nature as the dark indigo blue mineral covellite. However, it was later shown to be rather a cuprous compound, formula Cu+3S(S2). CuS is a moderate conductor of electricity. A black colloidal precipitate of CuS is formed when hydrogen sulfide, H2S, is bubbled through solutions of Cu(II) salts. It is one of a number of binary compounds of copper and sulfur (see copper sulfide for an overview of this subject), and has attracted interest because of its potential uses in catalysis and photovoltaics.

<span class="mw-page-title-main">Copper(I) cyanide</span> Chemical compound

Copper(I) cyanide is an inorganic compound with the formula CuCN. This off-white solid occurs in two polymorphs; impure samples can be green due to the presence of Cu(II) impurities. The compound is useful as a catalyst, in electroplating copper, and as a reagent in the preparation of nitriles.

A solubility chart is a chart describing whether the ionic compounds formed from different combinations of cations and anions dissolve in or precipitate from solution.

<span class="mw-page-title-main">Mercury(II) thiocyanate</span> Chemical compound

Mercury(II) thiocyanate (Hg(SCN)2) is an inorganic chemical compound, the coordination complex of Hg2+ and the thiocyanate anion. It is a white powder. It will produce a large, winding "snake" when ignited, an effect known as the Pharaoh's serpent.

<span class="mw-page-title-main">Sodium thiocyanate</span> Chemical compound

Sodium thiocyanate (sometimes called sodium sulphocyanide) is the chemical compound with the formula NaSCN. This colorless deliquescent salt is one of the main sources of the thiocyanate anion. As such, it is used as a precursor for the synthesis of pharmaceuticals and other specialty chemicals. Thiocyanate salts are typically prepared by the reaction of cyanide with elemental sulfur:

<span class="mw-page-title-main">Thiocyanogen</span> Chemical compound

Thiocyanogen, (SCN)2, is a pseudohalogen derived from the pseudohalide thiocyanate, [SCN], with behavior intermediate between dibromine and diiodine. This hexatomic compound exhibits C2 point group symmetry and has the connectivity NCS-SCN.

<span class="mw-page-title-main">Cobalt(II) thiocyanate</span> Chemical compound

Cobalt(II) thiocyanate is an inorganic compound with the formula Co(SCN)2. The anhydrous compound is a coordination polymer with a layered structure. The trihydrate, Co(SCN)2(H2O)3, is a isothiocyanate complex used in the cobalt thiocyanate test (or Scott test) for detecting cocaine. The test has been responsible for widespread false positives and false convictions.

<span class="mw-page-title-main">Lead(II) thiocyanate</span> Chemical compound

Lead(II) thiocyanate is a compound, more precisely a salt, with the formula Pb(SCN)2. It is a white crystalline solid, but will turn yellow upon exposure to light. It is slightly soluble in water and can be converted to a basic salt (Pb(CNS)2·Pb(OH)2 when boiled. Salt crystals may form upon cooling. Lead thiocyanate can cause lead poisoning if ingested and can adversely react with many substances. It has use in small explosives, matches, and dyeing.

<span class="mw-page-title-main">Liebeskind–Srogl coupling</span>

The Liebeskind–Srogl coupling reaction is an organic reaction forming a new carbon–carbon bond from a thioester and a boronic acid using a metal catalyst. It is a cross-coupling reaction. This reaction was invented by and named after Jiri Srogl from the Academy of Sciences, Czech Republic, and Lanny S. Liebeskind from Emory University, Atlanta, Georgia, USA. There are three generations of this reaction, with the first generation shown below. The original transformation used catalytic Pd(0), TFP = tris(2-furyl)phosphine as an additional ligand and stoichiometric CuTC = copper(I) thiophene-2-carboxylate as a co-metal catalyst. The overall reaction scheme is shown below.

<span class="mw-page-title-main">Silver thiocyanate</span> Chemical compound

Silver thiocyanate is the silver salt of thiocyanic acid with the formula AgSCN. Silver thiocyanate appears as a white crystalline powder. It is very commonly used in the synthesis of silver nanoparticles. Additionally, studies have found silver nanoparticles to be present in saliva present during the entire digestive process of silver nitrate. Silver thiocyanate is slightly soluble in water, with a solubility of 1.68 x 10−4 g/L. It is insoluble in ethanol, acetone, and acid.

<span class="mw-page-title-main">Copper(I) thiocyanate</span> Chemical compound

Copper(I) thiocyanate is a coordination polymer with formula CuSCN. It is an air-stable, white solid used as a precursor for the preparation of other thiocyanate salts.

<span class="mw-page-title-main">Nickel(II) thiocyanate</span> Chemical compound

Nickel(II) thiocyanate is a coordination polymer with formula Ni(SCN)2. It is a green-brown solid and its crystal structure was determined first in 1982.

Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,

<span class="mw-page-title-main">Organic thiocyanates</span>

Organic thiocyanates are organic compounds containing the functional group RSCN. the organic group is attached to sulfur: R−S−C≡N has a S–C single bond and a C≡N triple bond.

<span class="mw-page-title-main">Europium compounds</span> Chemical compounds

Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.

Lithium thiocyanate is a chemical compound with the formula LiSCN. It is an extremely hygroscopic white solid that forms the monohydrate and the dihydrate. It is the least stable of the alkali metal thiocyanates due to the large electrostatic deforming field of the lithium cation.

Transition metal complexes of thiocyanate describes coordination complexes containing one or more thiocyanate (SCN-) ligands. The topic also includes transition metal complexes of isothiocyanate. These complexes have few applications but played significant role in the development of coordination chemistry.

References

  1. 1 2 3 4 5 6 7 Cliffe, Matthew J.; Lee, Jeongjae; Paddison, Joseph A. M.; Schott, Sam; Mukherjee, Paromita; Gaultois, Michael W.; Manuel, Pascal; Sirringhaus, Henning; Dutton, Siân E.; Grey, Clare P. (2018-04-25). "Low-dimensional quantum magnetism in Cu(NCS)2: A molecular framework material". Physical Review B. 97 (14): 144421. arXiv: 1710.04889 . doi: 10.1103/PhysRevB.97.144421 . ISSN   2469-9950.
  2. 1 2 3 Hunter, J. A.; Massie, W. H. S.; Meiklejohn, J.; Reid, J. (1969-01-01). "Thermal rearrangement in copper(II) thiocyanate". Inorganic and Nuclear Chemistry Letters. 5 (1): 1–4. doi:10.1016/0020-1650(69)80226-6. ISSN   0020-1650.
  3. 1 2 Claus, C. (1838). "Beiträge zur näheren Kenntniss der Schwefelcyanmetalle". Journal für Praktische Chemie. 15 (1): 401–411. doi:10.1002/prac.18380150142. ISSN   1521-3897.
  4. Smith, D. L.; Saunders, V. I. (15 March 1982). "Preparation and structure refinement of the 2H polytype of β-copper(I) thiocyanate". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 38 (3): 907–909. doi: 10.1107/S0567740882004361 .