Thulium(III) acetate

Last updated
Thulium(III) acetate
Thulium acetate.jpg
Names
Other names
Thulium acetate
Thulium triacetate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.049.369 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 254-326-5
PubChem CID
  • InChI=1S/3C2H4O2.Tm/c3*1-2(3)4;/h3*1H3,(H,3,4);/q;;;+3/p-3
    Key: SNMVVAHJCCXTQR-UHFFFAOYSA-K
  • CC(=O)[O-].CC(=O)[O-].CC(=O)[O-].[Tm+3]
Properties
Tm(CH3COO)3
Appearancecrystals
soluble
Hazards
GHS labelling: [1]
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P264+P265, P271, P280, P302+P352, P304+P340, P305+P351+P338, P319, P321, P332+P317, P337+P317, P362+P364, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Thulium(III) acetate is the acetate salt of thulium, with the chemical formula of Tm(CH3COO)3. It can exist in the tetrahydrate or the anhydrous form. [2]

Contents

Properties

Thulium(III) acetate reacts with iron acetylacetonate at 300 °C, which can form the hexagonal crystal TmFeO3. [3]

Reacting thulium(III) acetate with trifluoroacetic acid will produce thulium trifluoroacetate: [4]

Tm(CH3COO)3 + 3 CF3COOH → Tm(CF3COO)3 + 3 CH3COOH

Related Research Articles

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

<span class="mw-page-title-main">Manganese(II) chloride</span> Chemical compound

Manganese(II) chloride is the dichloride salt of manganese, MnCl2. This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl2·2H2O) and tetrahydrate (MnCl2·4H2O), with the tetrahydrate being the most common form. Like many Mn(II) species, these salts are pink, with the paleness of the color being characteristic of transition metal complexes with high spin d5 configurations.

<span class="mw-page-title-main">Iron(II) acetate</span> Chemical compound

Iron(II) acetate is a coordination complex with formula Fe(CH3COO)2. It is a white solid, although impure samples can be slightly colored. A light green tetrahydrate is also known, which is highly soluble in water.

<span class="mw-page-title-main">Magnesium acetate</span> Chemical compound

Anhydrous magnesium acetate has the chemical formula Mg(C2H3O2)2 and in its hydrated form, magnesium acetate tetrahydrate, it has the chemical formula Mg(CH3COO)2 • 4H2O. In this compound magnesium has an oxidation state of 2+. Magnesium acetate is the magnesium salt of acetic acid. It is deliquescent and upon heating, it decomposes to form magnesium oxide. Magnesium acetate is commonly used as a source of magnesium in biological reactions.

<span class="mw-page-title-main">Tris(acetylacetonato)iron(III)</span> Chemical compound

Tris(acetylacetonato) iron(III), often abbreviated Fe(acac)3, is a ferric coordination complex featuring acetylacetonate (acac) ligands, making it one of a family of metal acetylacetonates. It is a red air-stable solid that dissolves in nonpolar organic solvents.

<span class="mw-page-title-main">Nickel(II) acetate</span> Chemical compound

Nickel(II) acetate is the name for the coordination compounds with the formula Ni(CH3CO2)2·x H2O where x can be 0, 2, and 4. The green tetrahydrate Ni(CH3CO2)2·4 H2O is most common. It is used for electroplating.

<span class="mw-page-title-main">Dysprosium acetylacetonate</span> Chemical compound

Dysprosium acetylacetonate is a chemical compound of dysprosium with formula Dy(C5H7O2)3(H2O)n.

Thullium(III) fluoride is an inorganic compound with the chemical formula TmF3.

<span class="mw-page-title-main">Neodymium acetate</span> Compound of neodymium

Neodymium acetate is an inorganic salt composed of a neodymium atom trication and three acetate groups as anions where neodymium exhibits the +3 oxidation state. It has a chemical formula of Nd(CH3COO)3 although it can be informally referred to as NdAc because Ac is an informal symbol for acetate. It commonly occurs as a light purple powder.

<span class="mw-page-title-main">Gallium acetate</span> Chemical compound

Gallium acetate is a salt composed of a gallium atom trication and three acetate groups as anions where gallium exhibits the +3 oxidation state. It has a chemical formula of Ga(CH3COO)3 although it can be informally referred to as GaAc because Ac is an informal symbol for acetate. Gallium is moderately water-soluble and decomposes to gallium oxide when heated to around 70 °C. Gallium acetate, like other acetate compounds, is a good precursor to ultra-pure compounds, catalysts and nanoscale materials. Gallium acetate is being considered as a substitute in de-icing compounds like calcium chloride and magnesium chloride.

<span class="mw-page-title-main">Europium(III) acetate</span> Chemical compound

Europium(III) acetate is an inorganic salt of europium and acetic acid with the chemical formula of Eu(CH3COO)3. In this compound, europium exhibits the +3 oxidation state. It can exist in the anhydrous form, sesquihydrate and tetrahydrate. Its hydrate molecule is a dimer.

<span class="mw-page-title-main">Holmium acetate</span> Compound of holmium

Holmium acetate is the acetate salt of holmium, with a chemical formula of Ho(CH3COO)3.

Europium(III) chromate is a chemical compound composed of europium, chromium and oxygen with europium in the +3 oxidation state, chromium in the +5 oxidation state and oxygen in the -2 oxidation state. It has the chemical formula of EuCrO4.

<span class="mw-page-title-main">Holmium acetylacetonate</span> Chemical compound

Holmium acetylacetonate is a coordination complex, with the chemical formula of Ho(C5H7O2)3 or Ho(acac)3. It can be obtained via the reaction between metallic holmium or holmium(III) hydride with acetylacetone, or via the reaction between holmium(III) chloride and ammonium acetylacetonate. Its anhydrous form is stable in a dry atmosphere but forms a hydrate in humid air.

Thulium(II) fluoride is one of the fluoride salts of the lanthanide metal thulium, with the chemical compound of TmF2. It can react with zirconium tetrafluoride at 900 °C to form TmZrF6, which has a hexagonal structure. In addition, low-temperature Mössbauer spectroscopy and some theoretical studies of thulium(II) fluoride have also been reported.

Erbium compounds are compounds containing the element erbium (Er). These compounds are usually dominated by erbium in the +3 oxidation state, although the +2, +1 and 0 oxidation states have also been reported.

Scandium acetate is an inorganic compound, with the chemical formula of Sc(CH3COO)3. It exists in the anhydrous and the hydrate forms. It can be obtained by reacting scandium hydroxide with aqueous acetic acid. It is a water-soluble crystal that decomposes into scandium oxide at high temperature. It can be used to prepare other scandium-containing materials.

<span class="mw-page-title-main">Terbium acetate</span> Chemical compound

Terbium(III) acetate is the acetate salt of terbium, with a chemical formula of Tb(CH3COO)3.

<span class="mw-page-title-main">Gadolinium acetate</span> Chemical compound

Gadolinium acetate is the acetate salt of the lanthanide element gadolinium, with the chemical formula Gd(CH3COO)3. It is a colorless crystal that is soluble in water and can form a hydrate. Its tetrahydrate has ground state ferromagnetism.

<span class="mw-page-title-main">Lanthanum acetylacetonate</span> Chemical compound

Lanthanum acetylacetonate is a coordination compound with the chemical formula La(C5H7O2)3, or abbreviated as La(acac)3. Its instability constants (logYn) are 3.65, 5.13 and 6.12 (corresponding to n=1, 2, 3). It can be prepared by the reaction of lanthanum alkoxide and acetylacetone. Its tetrahydrate decomposes into monohydrate at 110 °C, obtains the anhydrous form at 150 °C, undergoes La(CH3COO)(acac)2 and La(CH3COO)2(acac), and at 180~285 °C lanthanum acetate is produced. It can be used to prepare NaLaS2, La2Zr2O7 and other materials.

References

  1. "Thulium acetate". pubchem.ncbi.nlm.nih.gov.
  2. K. I. Petrov, M. G. Zaitseva, L. M. Sukova (1971-08-01). "Spectroscopic study of thulium acetate tetrahydrate single crystals". Journal of Applied Spectroscopy. 15 (2): 1058–1060. Bibcode:1971JApSp..15.1058P. doi:10.1007/BF00607309. ISSN   1573-8647. S2CID   96964200.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Masashi Inoue, Toshihiro Nishikawa, Tomohiro Nakamura, Tomoyuki Inui (1997). "Glycothermal Reaction of Rare-Earth Acetate and Iron Acetylacetonate: Formation of Hexagonal ReFeO3". Journal of the American Ceramic Society. 80 (8): 2157–2160. doi:10.1111/j.1151-2916.1997.tb03103.x. ISSN   1551-2916.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. S. I. Gutnikov, E. V. Karpova, M. A. Zakharov, A. I. Boltalin (2006-04-01). "Thulium(III) trifluoroacetates Tm(CF3COO)3 · 3H2O and Tm2(CF3COO)6 · 2CF3COOH · 3H2O: Synthesis and crystal structure". Russian Journal of Inorganic Chemistry. 51 (4): 541–548. doi:10.1134/S0036023606040061. ISSN   1531-8613. S2CID   101651962.{{cite journal}}: CS1 maint: multiple names: authors list (link)

External reading