Tin(II) acetate

Last updated
Tin(II) acetate
2.svg Acetat-Ion.svg Sn2+.svg
Names
Other names
Tin diacetate
Identifiers
3D model (JSmol)
ECHA InfoCard 100.010.306 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 211-335-9
PubChem CID
UNII
  • InChI=1S/2C2H4O2.Sn/c2*1-2(3)4;/h2*1H3,(H,3,4);/q;;+2/p-2
    Key: PNOXNTGLSKTMQO-UHFFFAOYSA-L
  • CC(=O)[O-].CC(=O)[O-].[Sn+2]
Properties
Sn(CH3COO)2
Molar mass 236.80
Appearancewhite crystals
Density 2.310 g·cm−3
Melting point 182.75 °C (360.95 °F; 455.90 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tin(II) acetate is the acetate salt of tin(II), with the chemical formula of Sn(CH3COO)2. It was first discovered in 1822. [1]

Contents

Preparation

To obtain tin(II) acetate, tin(II) oxide is dissolved in glacial acetic acid and refluxed to obtain yellow Sn(CH3COO)2·2CH3COOH when cooled. The acetic acid can be removed by heating under reduced pressure, and the white Sn(CH3COO)2 crystals can be obtained by sublimation. [1]

Properties

Sn(CH3COO)2·2CH3COOH undergoes disproportionation and decomposition when heated under normal pressure, and products such as tin(IV) oxide and hydrogen are generated. The decomposition of anhydrous Sn(CH3COO)2 is to the blue-black tin(II) oxide. [2]

Anhydrous Sn(CH3COO)2 decomposes in water, [2] but complexes such as KSn(CH3COO2)3 and Ba[Sn(CH3COO)3]2 can be formed in alkali metal or alkaline earth metal acetates. [3]

Related Research Articles

<span class="mw-page-title-main">Sodium acetate</span> Chemical compound

Sodium acetate, CH3COONa, also abbreviated NaOAc, is the sodium salt of acetic acid. This colorless deliquescent salt has a wide range of uses.

<span class="mw-page-title-main">Zinc acetate</span> Chemical compound

Zinc acetate is a salt with the formula Zn(CH3CO2)2, which commonly occurs as the dihydrate Zn(CH3CO2)2·2H2O. Both the hydrate and the anhydrous forms are colorless solids that are used as dietary supplements. When used as a food additive, it has the E number E650.

<span class="mw-page-title-main">Cobalt(II) acetate</span> Chemical compound

Cobalt(II) acetate is the cobalt salt of acetic acid. It is commonly found as the tetrahydrate Co(CH3CO2)2·4 H2O, abbreviated Co(OAc)2·4 H2O. It is used as a catalyst.

<span class="mw-page-title-main">Acetic acid</span> Colorless and faint organic acid found in vinegar

Acetic acid, systematically named ethanoic acid, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH. Vinegar is at least 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water and other trace elements.

<span class="mw-page-title-main">Magnesium acetate</span> Chemical compound

Anhydrous magnesium acetate has the chemical formula Mg(C2H3O2)2 and in its hydrated form, magnesium acetate tetrahydrate, it has the chemical formula Mg(CH3COO)2 • 4H2O. In this compound magnesium has an oxidation state of 2+. Magnesium acetate is the magnesium salt of acetic acid. It is deliquescent and upon heating, it decomposes to form magnesium oxide. Magnesium acetate is commonly used as a source of magnesium in biological reactions.

<span class="mw-page-title-main">Barium acetate</span> Chemical compound

Barium acetate (Ba(C2H3O2)2) is the salt of barium(II) and acetic acid. Barium acetate is toxic to humans, but has use in chemistry and manufacturing.

<span class="mw-page-title-main">Nickel(II) acetate</span> Chemical compound

Nickel(II) acetate is the name for the coordination compounds with the formula Ni(CH3CO2)2·x H2O where x can be 0, 2, and 4. The green tetrahydrate Ni(CH3CO2)2·4 H2O is most common. It is used for electroplating.

Aluminium triacetate, formally named aluminium acetate, is a chemical compound with composition Al(CH
3
CO
2
)
3
. Under standard conditions it appears as a white, water-soluble solid that decomposes on heating at around 200 °C. The triacetate hydrolyses to a mixture of basic hydroxide / acetate salts, and multiple species co-exist in chemical equilibrium, particularly in aqueous solutions of the acetate ion; the name aluminium acetate is commonly used for this mixed system.

<span class="mw-page-title-main">Tin(IV) nitrate</span> Chemical compound

Tin(IV) nitrate is a salt of tin with nitric acid. It is a volatile white solid, subliming at 40 °C under a vacuum. Unlike other nitrates, it reacts with water to produce nitrogen dioxide.

<span class="mw-page-title-main">Neodymium acetate</span> Compound of neodymium

Neodymium acetate is an inorganic salt composed of a neodymium atom trication and three acetate groups as anions where neodymium exhibits the +3 oxidation state. It has a chemical formula of Nd(CH3COO)3 although it can be informally referred to as NdAc because Ac is an informal symbol for acetate. It commonly occurs as a light purple powder.

<span class="mw-page-title-main">Praseodymium(III) acetate</span> Compound of praseodymium

Praseodymium(III) acetate is an inorganic salt composed of a Praseodymium atom trication and three acetate groups as anions. This compound commonly forms the dihydrate, Pr(O2C2H3)3·2H2O.

<span class="mw-page-title-main">Neodymium compounds</span> Chemical compounds with at least one neodymium atom

Neodymium compounds are compounds formed by the lanthanide metal neodymium (Nd). In these compounds, neodymium generally exhibits the +3 oxidation state, such as NdCl3, Nd2(SO4)3 and Nd(CH3COO)3. Compounds with neodymium in the +2 oxidation state are also known, such as NdCl2 and NdI2. Some neodymium compounds have colors that vary based upon the type of lighting.

<span class="mw-page-title-main">Gallium acetate</span> Chemical compound

Gallium acetate is a salt composed of a gallium atom trication and three acetate groups as anions where gallium exhibits the +3 oxidation state. It has a chemical formula of Ga(CH3COO)3 although it can be informally referred to as GaAc because Ac is an informal symbol for acetate. Gallium is moderately water-soluble and decomposes to gallium oxide when heated to around 70 °C. Gallium acetate, like other acetate compounds, is a good precursor to ultra-pure compounds, catalysts and nanoscale materials. Gallium acetate is being considered as a substitute in de-icing compounds like calcium chloride and magnesium chloride.

<span class="mw-page-title-main">Europium(III) acetate</span> Chemical compound

Europium(III) acetate is an inorganic salt of europium and acetic acid with the chemical formula of Eu(CH3COO)3. In this compound, europium exhibits the +3 oxidation state. It can exist in the anhydrous form, sesquihydrate and tetrahydrate. Its hydrate molecule is a dimer.

<span class="mw-page-title-main">Lutetium(III) acetate</span> Compound of lutetium

Lutetium(III) acetate is the acetate salt of lutetium with the chemical formula of Lu(CH3COO)3.

<span class="mw-page-title-main">Dysprosium(III) acetate</span> Chemical compound

Dysprosium acetate is a hypothetical salt of dysprosium and acetate. Its proposed chemical formula is Dy(CH3COO)3.

<span class="mw-page-title-main">Holmium acetate</span> Compound of holmium

Holmium acetate is the acetate salt of holmium, with a chemical formula of Ho(CH3COO)3.

<span class="mw-page-title-main">Cerium(III) acetate</span> Chemical compound

Cerium acetate is an inorganic compound with the chemical formula of Ce(CH3COO)3. It is a white powder that is soluble in water. Its 1.5 hydrate loses water at 133°C to obtain an amorphous anhydrous form, and the amorphous phase changes to crystal at 212°C, and phase changes again at 286°C.

Gold(III) acetate, also known as auric acetate, is a chemical compound of gold and acetic acid. It is a yellow solid that decomposes at 170 °C to gold metal. This decomposition of gold(III) acetate has been studied as a pathway to produce gold nanoparticles as catalysts.

Tin(IV) acetate is the acetate salt of tin(IV), with the chemical formula of Sn(CH3COO)4.

References

  1. 1 2 Varvara S. Stafeeva, Alexander S. Mitiaev, Artem M. Abakumov, Alexander A. Tsirlin, Artem M. Makarevich, Evgeny V. Antipov (November 2007). "Crystal structure and chemical bonding in tin(II) acetate". Polyhedron. 26 (18): 5365–5369. doi:10.1016/j.poly.2007.08.010. Archived from the original on 2020-02-12. Retrieved 2019-04-19.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 Donaldson, J. D., Moser, W., & Simpson, W. B. (1964). 1147. Tin (II) acetates. Journal of the Chemical Society, 5942-5947.
  3. Donaldson, J. D., & Knifton, J. F. (1966). Complex tin (II) acetates. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 332-336.