Platinum(II) acetate

Last updated
Platinum(II) acetate
Pt4(OAc)8 (PLATAC10).png
Names
Other names
platinum diacetate, platinum acetate
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/2C2H4O2.Pt/c2*1-2(3)4;/h2*1H3,(H,3,4);/q;;+2/p-2
    Key: QCSGLAMXZCLSJW-UHFFFAOYSA-L
  • CC(=O)[O-].CC(=O)[O-].[Pt+2]
Properties
Pt(CH3CO2)2
Molar mass 315.19 g/mol
Appearancepurple solid
Density 3.374 g/cm3
Melting point 245 °C (473 °F; 518 K) decomposition
chloroform
Structure [1]
tetragonal
P43212, No. 96
a = 10.254 Å, c = 50.494 Å
8 tetrameric molecules
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Platinum(II) acetate is a purple-colored coordination complex. The complex adopts an unusual structure consisting of a square array of Pt atoms.

Contents

Preparation

Several syntheses of platinum(II) acetate have been reported. Geoffrey Wilkinson et al. reported a synthesis from sodium hexahydroxyplatinate, nitric acid, and acetic acid. This intermediate solution was reducted with formic acid. The procedure is not highly reproducible. [2]

Alternatively, the complex can be prepared by the reaction of silver acetate with platinum(II) chloride. [3]

Structure

According to X-ray crystallography, the complex is tetrameric, in contrast to the trimeric palladium analog. [4] The four platinum atoms form a square cluster, with eight bridging acetate ligands surrounding them. The compound has slight distortions from idealized D2d symmetry. The crystal is tetragonal. [1]

Related Research Articles

In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to other atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. While fully ionic bonds are not found in nature, many bonds exhibit strong ionicity, making oxidation state a useful predictor of charge.

Ferrocene is an organometallic compound with the formula Fe(C5H5)2. The molecule is a complex consisting of two cyclopentadienyl rings bound to a central iron atom. It is an orange solid with a camphor-like odor, that sublimes above room temperature, and is soluble in most organic solvents. It is remarkable for its stability: it is unaffected by air, water, strong bases, and can be heated to 400 °C without decomposition. In oxidizing conditions it can reversibly react with strong acids to form the ferrocenium cation Fe(C5H5)+2. Ferrocene and the ferrocenium cation are sometimes abbreviated as Fc and Fc+ respectively.

The Heck reaction is the chemical reaction of an unsaturated halide with an alkene in the presence of a base and a palladium catalyst to form a substituted alkene. It is named after Tsutomu Mizoroki and Richard F. Heck. Heck was awarded the 2010 Nobel Prize in Chemistry, which he shared with Ei-ichi Negishi and Akira Suzuki, for the discovery and development of this reaction. This reaction was the first example of a carbon-carbon bond-forming reaction that followed a Pd(0)/Pd(II) catalytic cycle, the same catalytic cycle that is seen in other Pd(0)-catalyzed cross-coupling reactions. The Heck reaction is a way to substitute alkenes.

<span class="mw-page-title-main">Palladium(II) chloride</span> Chemical compound

Palladium(II) chloride, also known as palladium dichloride and palladous chloride, are the chemical compounds with the formula PdCl2. PdCl2 is a common starting material in palladium chemistry – palladium-based catalysts are of particular value in organic synthesis. It is prepared by the reaction of chlorine with palladium metal at high temperatures.

<span class="mw-page-title-main">Palladium(II) acetate</span> Chemical compound

Palladium(II) acetate is a chemical compound of palladium described by the formula [Pd(O2CCH3)2]n, abbreviated [Pd(OAc)2]n. It is more reactive than the analogous platinum compound. Depending on the value of n, the compound is soluble in many organic solvents and is commonly used as a catalyst for organic reactions.

<span class="mw-page-title-main">Copper(II) acetate</span> Chemical compound

Copper(II) acetate, also referred to as cupric acetate, is the chemical compound with the formula Cu(OAc)2 where AcO is acetate (CH
3
CO
2
). The hydrated derivative, Cu2(OAc)4(H2O)2, which contains one molecule of water for each copper atom, is available commercially. Anhydrous copper(II) acetate is a dark green crystalline solid, whereas Cu2(OAc)4(H2O)2 is more bluish-green. Since ancient times, copper acetates of some form have been used as fungicides and green pigments. Today, copper acetates are used as reagents for the synthesis of various inorganic and organic compounds. Copper acetate, like all copper compounds, emits a blue-green glow in a flame.

<span class="mw-page-title-main">Zeise's salt</span> Chemical compound

Zeise's salt, potassium trichloro(ethylene)platinate(II) hydrate, is the chemical compound with the formula K[PtCl3(C2H4)]·H2O. The anion of this air-stable, yellow, coordination complex contains an η2-ethylene ligand. The anion features a platinum atom with a square planar geometry. The salt is of historical importance in the area of organometallic chemistry as one of the first examples of a transition metal alkene complex and is named for its discoverer, William Christopher Zeise.

<span class="mw-page-title-main">Rhodium(II) acetate</span> Chemical compound

Rhodium(II) acetate is the coordination compound with the formula Rh2(AcO)4, where AcO is the acetate ion (CH
3
CO
2
). This dark green powder is slightly soluble in polar solvents, including water. It is used as a catalyst for cyclopropanation of alkenes. It is a widely studied example of a transition metal carboxylate complex.

Transition metal hydrides are chemical compounds containing a transition metal bonded to hydrogen. Most transition metals form hydride complexes and some are significant in various catalytic and synthetic reactions. The term "hydride" is used loosely: some of them are acidic (e.g., H2Fe(CO)4), whereas some others are hydridic, having H-like character (e.g., ZnH2).

<span class="mw-page-title-main">Dichloro(cycloocta-1,5-diene)platinum(II)</span> Chemical compound

Dichloro(1,5-cyclooctadiene)platinum(II) (Pt(cod)Cl2) is an organometallic compound of platinum. This colourless solid is an entry point to other platinum compounds through the displacement of the cod and/or chloride ligands. It is one of several complexes of cycloocta-1,5-diene.

<span class="mw-page-title-main">Bis(triphenylphosphine)palladium chloride</span> Chemical compound

Bis(triphenylphosphine)palladium chloride is a coordination compound of palladium containing two triphenylphosphine and two chloride ligands. It is a yellow solid that is soluble in some organic solvents. It is used for palladium-catalyzed coupling reactions, e.g. the Sonogashira–Hagihara reaction. The complex is square planar. Many analogous complexes are known with different phosphine ligands.

Organoplatinum chemistry is the chemistry of organometallic compounds containing a carbon to platinum chemical bond, and the study of platinum as a catalyst in organic reactions. Organoplatinum compounds exist in oxidation state 0 to IV, with oxidation state II most abundant. The general order in bond strength is Pt-C (sp) > Pt-O > Pt-N > Pt-C (sp3). Organoplatinum and organopalladium chemistry are similar, but organoplatinum compounds are more stable and therefore less useful as catalysts.

Metal acetylacetonates are coordination complexes derived from the acetylacetonate anion (CH
3
COCHCOCH
3
) and metal ions, usually transition metals. The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal to form a six-membered chelate ring. The simplest complexes have the formula M(acac)3 and M(acac)2. Mixed-ligand complexes, e.g. VO(acac)2, are also numerous. Variations of acetylacetonate have also been developed with myriad substituents in place of methyl (RCOCHCOR). Many such complexes are soluble in organic solvents, in contrast to the related metal halides. Because of these properties, acac complexes are sometimes used as catalyst precursors and reagents. Applications include their use as NMR "shift reagents" and as catalysts for organic synthesis, and precursors to industrial hydroformylation catalysts. C
5
H
7
O
2
in some cases also binds to metals through the central carbon atom; this bonding mode is more common for the third-row transition metals such as platinum(II) and iridium(III).

<span class="mw-page-title-main">Metal halides</span>

Metal halides are compounds between metals and halogens. Some, such as sodium chloride are ionic, while others are covalently bonded. A few metal halides are discrete molecules, such as uranium hexafluoride, but most adopt polymeric structures, such as palladium chloride.

In chemistry, compounds of palladium(III) feature the noble metal palladium in the unusual +3 oxidation state (in most of its compounds, palladium has the oxidation state II). Compounds of Pd(III) occur in mononuclear and dinuclear forms. Palladium(III) is most often invoked, not observed in mechanistic organometallic chemistry.

<span class="mw-page-title-main">Wolffram's red salt</span> Chemical compound

Wolffram’s Red Salt is an inorganic compound with the double salt formula [Pt(C2H5NH2)4Cl2] [Pt(C2H5NH2)4]Cl4·4H2O. This compound is an early example of a one-dimensional coordination polymer, serving as a representative structure for studies in solid-state physics. This species has been of interest due to the unusual mixed valence system of Pt(II) and Pt(IV) bridged by a chlorine atom. The deep red color of the double salt, where the components were colorless, piqued the interest of early inorganic chemists and ultimately inspired studies into the physical properties of the compound in search of potential applications.

<span class="mw-page-title-main">Trimethylplatinum iodide</span> Chemical compound

Trimethylplatinum iodide is the organoplatinum complex with the formula [(CH3)3PtI]4. It is a white, air-stable solid that was one of the first σ-alkyl metal complexes reported. It arises from the reaction of potassium hexachloroplatinate with methylmagnesium iodide. The complex exists as a tetramer: a cubane-type cluster with four octahedral Pt(IV) centers linked by four iodides as triply bridging ligands. Due to its stability, it is often utilized as a precursor en route to the synthesis of other organoplatinum compound, such as hydrosilylation catalysts. It is also used as a precursor for forming platinum layers for electronics.

<span class="mw-page-title-main">Transition metal carboxylate complex</span> Class of chemical compounds

Transition metal carboxylate complexes are coordination complexes with carboxylate (RCO2) ligands. Reflecting the diversity of carboxylic acids, the inventory of metal carboxylates is large. Many are useful commercially, and many have attracted intense scholarly scrutiny. Carboxylates exhibit a variety of coordination modes, most common are κ1- (O-monodentate), κ2 (O,O-bidentate), and bridging.

<span class="mw-page-title-main">Transition metal dithiocarbamate complexes</span>

Transition metal dithiocarbamate complexes are coordination complexes containing one or more dithiocarbamate ligand, which are typically abbreviated R2dtc. Many complexes are known. Several homoleptic derivatives have the formula M(R2dtc)n where n = 2 and 3.

<span class="mw-page-title-main">Transition metal nitrate complex</span> Compound of nitrate ligands

A transition metal nitrate complex is a coordination compound containing one or more nitrate ligands. Such complexes are common starting reagents for the preparation of other compounds.

References

  1. 1 2 de C. T. Carrondo, Maria A. A. F.; Skapski, Andrzej C. (1976). "X-Ray crystal structure of tetrameric platinum(II) acetate: a square-cluster complex with short Pt–Pt bonds and octahedral co-ordination geometry". J. Chem. Soc., Chem. Commun. (11): 410–411. doi:10.1039/C39760000410. ISSN   0022-4936.
  2. T. A. Stephenson; S. M. Morehouse; A. R. Powell; J. P. Heffer; G. Wilkinson (1965). "Carboxylates of Palladium, Platinum, and Rhodium, and Their Adducts". Journal of the Chemical Society: 3632–3640. doi:10.1039/jr9650003632.
  3. Marino Basato; Andrea Biffis; Gianluca Martinati; Cristina Tubaro; Alfonso Venzo; Paolo Ganis; Franco Benetollo (2003). "Reaction of Platinum Acetate with Phosphines and Molecular Structure of trans-[Pt(OAc)2(PPh3)2]". Inorganica Chimica Acta . 355: 399–403. doi:10.1016/S0020-1693(03)00314-1.
  4. Markov, Alexander A.; Yakushev, Ilya A.; Churakov, Andrey V.; Khrustalev, Victor N.; Cherkashina, Natalia V.; Stolarov, Igor P.; Gekhman, Alexander E.; Vargaftik, Michael N. (2019). "Structure and Quantum Chemical Study of Crystalline Platinum(II) Acetate". Mendeleev Communications. 29 (5): 489–491. doi:10.1016/j.mencom.2019.09.003.