Diruthenium tetraacetate chloride

Last updated
Diruthenium tetraacetate chloride
Ru2(OAc)4Cl.svg
Names
IUPAC name
Ruthenium(II,III) acetate chloride
Other names
Tetrakis(mu-(acetato-O:O'))chlorodiruthenium
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 254-144-6
PubChem CID
  • InChI=1S/4C2H4O2.ClH.2Ru/c4*1-2(3)4;;;/h4*1H3,(H,3,4);1H;;/q;;;;;;+1/p-1
    Key: LLHUCACCCSUOKG-UHFFFAOYSA-M
  • CC(=O)O.CC(=O)O.CC(=O)O.CC(=O)O.Cl[Ru].[Ru]
Properties
C8H12ClO8Ru2
Molar mass 473.77 g·mol−1
Appearancered-brown solid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Diruthenium tetraacetate chloride is the coordination polymer with the formula {[Ru2(O2CCH3)4]Cl}n. A red brown solid, the compound is obtained by the reduction of ruthenium trichloride in acetic acid. [1] The compound has attracted much academic interest because it features a fractional metal-metal bond order of 2.5. [2]

The [Ru2(O2CCH3)4]+ core adopts the Chinese lantern structure, with four acetate ligands spanning the Ru2 center. The Ru-Ru distance is 228 pm. [3] [4] The [Ru2(O2CCH3)4]+ cages are linked by bridging chloride ligands.

Related Research Articles

In inorganic chemistry, a homoleptic chemical compound is a metal compound with all ligands identical. The term uses the "homo-" prefix to indicate that something is the same for all. Any metal species which has more than one type of ligand is heteroleptic.

<span class="mw-page-title-main">Ruthenium(III) chloride</span> Chemical compound

Ruthenium(III) chloride is the chemical compound with the formula RuCl3. "Ruthenium(III) chloride" more commonly refers to the hydrate RuCl3·xH2O. Both the anhydrous and hydrated species are dark brown or black solids. The hydrate, with a varying proportion of water of crystallization, often approximating to a trihydrate, is a commonly used starting material in ruthenium chemistry.

<span class="mw-page-title-main">Bridging ligand</span> Ligand which connects two or more (usually metal) atoms in a coordination complex

In coordination chemistry, a bridging ligand is a ligand that connects two or more atoms, usually metal ions. The ligand may be atomic or polyatomic. Virtually all complex organic compounds can serve as bridging ligands, so the term is usually restricted to small ligands such as pseudohalides or to ligands that are specifically designed to link two metals.

The transition metal ruthenium forms several compounds, with oxidation states of ruthenium ranging from 0 to +8, and −2. The properties of ruthenium and osmium compounds are often similar. The +2, +3, and +4 states are the most common. The most prevalent precursor is ruthenium trichloride, a red solid that is poorly defined chemically but versatile synthetically.

<span class="mw-page-title-main">Tris(bipyridine)ruthenium(II) chloride</span> Chemical compound

Tris(bipyridine)ruthenium(II) chloride is the chloride salt coordination complex with the formula [Ru(bpy)3]Cl2. This polypyridine complex is a red crystalline salt obtained as the hexahydrate, although all of the properties of interest are in the cation [Ru(bpy)3]2+, which has received much attention because of its distinctive optical properties. The chlorides can be replaced with other anions, such as PF6.

<span class="mw-page-title-main">Dichlorotetrakis(dimethylsulfoxide)ruthenium(II)</span> Chemical compound

Dichlorotetrakis(dimethyl sulfoxide) ruthenium(II) describes coordination compounds with the formula RuCl2(dmso)4, where DMSO is dimethylsulfoxide. Both cis and trans isomers are known, but the cis isomer is more common. The cis isomer is a yellow, air-stable solid that is soluble in some organic solvents. These compounds have attracted attention as possible anti-cancer drugs.

<span class="mw-page-title-main">Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium</span> Chemical compound

Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium is the organoruthenium half-sandwich compound with formula RuCl(PPh3)2(C5H5). It as an air-stable orange crystalline solid that is used in a variety of organometallic synthetic and catalytic transformations. The compound has idealized Cs symmetry. It is soluble in chloroform, dichloromethane, and acetone.

<span class="mw-page-title-main">Organoruthenium chemistry</span>

Organoruthenium chemistry is the chemistry of organometallic compounds containing a carbon to ruthenium chemical bond. Several organoruthenium catalysts are of commercial interest and organoruthenium compounds have been considered for cancer therapy. The chemistry has some stoichiometric similarities with organoiron chemistry, as iron is directly above ruthenium in group 8 of the periodic table. The most important reagents for the introduction of ruthenium are ruthenium(III) chloride and triruthenium dodecacarbonyl.

<span class="mw-page-title-main">Chinese lantern structure</span>

In chemistry, the Chinese lantern structure is a coordination complex where two metal atoms are bridged by four bidentate ligands. This structure type is also known as a paddlewheel complex. Examples include chromium(II) acetate, molybdenum(II) acetate, and rhodium(II) acetate, copper(II) acetate dihydrate. The name is derived from the resemblance between the structure and a Chinese paper lantern. Often additional ligands are bound to the metal centers along the M---M vector. The degree of metal-metal bonding varies according to the d-electron configuration.

<span class="mw-page-title-main">Ruthenium(III) acetylacetonate</span> Chemical compound

Ruthenium(III) acetylacetonate is a coordination complex with the formula Ru(O2C5H7)3. O2C5H7 is the ligand called acetylacetonate. This compound exists as a dark violet solid that is soluble in most organic solvents. It is used as a precursor to other compounds of ruthenium.

<span class="mw-page-title-main">Dichlorotris(triphenylphosphine)ruthenium(II)</span> Chemical compound

Dichlorotris(triphenylphosphine)ruthenium(II) is a coordination complex of ruthenium. It is a chocolate brown solid that is soluble in organic solvents such as benzene. The compound is used as a precursor to other complexes including those used in homogeneous catalysis.

<span class="mw-page-title-main">Pentaamine(dinitrogen)ruthenium(II) chloride</span> Chemical compound

Pentaamine(nitrogen)ruthenium(II) chloride is an inorganic compound with the formula [Ru(NH3)5(N2)]Cl2. It is a nearly white solid, but its solutions are yellow. The cationic complex is of historic significance as the first compound with N2 bound to a metal center. [Ru(NH3)5(N2)]2+ adopts an octahedral structure with C4v symmetry.

Ruthenium anti-cancer drugs are coordination complexes of ruthenium complexes that have anticancer properties. They promise to provide alternatives to platinum-based drugs for anticancer therapy. No ruthenium anti-cancer drug has been commercialized.

A metal carbido complex is a coordination complex that contains a carbon atom as a ligand. They are analogous to metal nitrido complexes. Carbido complexes are a molecular subclass of carbides, which are prevalent in organometallic and inorganic chemistry. Carbido complexes represent models for intermediates in Fischer–Tropsch synthesis, olefin metathesis, and related catalytic industrial processes. Ruthenium-based carbido complexes are by far the most synthesized and characterized to date. Although, complexes containing chromium, gold, iron, nickel, molybdenum, osmium, rhenium, and tungsten cores are also known. Mixed-metal carbides are also known.

<span class="mw-page-title-main">Half sandwich compound</span> Class of coordination compounds

Half sandwich compounds, also known as piano stool complexes, are organometallic complexes that feature a cyclic polyhapto ligand bound to an MLn center, where L is a unidentate ligand. Thousands of such complexes are known. Well-known examples include cyclobutadieneiron tricarbonyl and (C5H5)TiCl3. Commercially useful examples include (C5H5)Co(CO)2, which is used in the synthesis of substituted pyridines, and methylcyclopentadienyl manganese tricarbonyl, an antiknock agent in petrol.

<span class="mw-page-title-main">Ruthenium(III) acetate</span> Chemical compound

Ruthenium(III) acetate, commonly known as basic ruthenium acetate, describes a family of salts where the cation has the formula [Ru3O(O2CCH3)6(OH2)3]+. A representative derivative is the dihydrate of the tetrafluoroborate salt [Ru3O(O2CCH3)6(OH2)3]BF4(H2O)2, which is the source of the data in the table above. This and related salts are forest green, air-stable solids that are soluble in alcohols.

<span class="mw-page-title-main">Metal–metal bond</span>

In inorganic chemistry, metal–metal bonds describe attractive interactions between metal centers. The simplest examples are found in bimetallic complexes. Metal–metal bonds can be "supported", i.e. be accompanied by one or more bridging ligands, or "unsupported". They can also vary according to bond order. The topic of metal–metal bonding is usually discussed within the framework of coordination chemistry, but the topic is related to extended metallic bonding, which describes interactions between metals in extended solids such as bulk metals and metal subhalides.

<span class="mw-page-title-main">Transition metal chloride complex</span> Coordination complex

In chemistry, a transition metal chloride complex is a coordination complex that consists of a transition metal coordinated to one or more chloride ligand. The class of complexes is extensive.

<span class="mw-page-title-main">Transition metal thioether complex</span>

Transition metal thioether complexes comprise coordination complexes of thioether (R2S) ligands. The inventory is extensive.

<span class="mw-page-title-main">Transition metal carboxylate complex</span> Class of chemical compounds

Transition metal carboxylate complexes are coordination complexes with carboxylate (RCO2) ligands. Reflecting the diversity of carboxylic acids, the inventory of metal carboxylates is large. Many are useful commercially, and many have attracted intense scholarly scrutiny. Carboxylates exhibit a variety of coordination modes, most common are κ1- (O-monodentate), κ2 (O,O-bidentate), and bridging.

References

  1. Mitchell, Robert W.; Spencer, Alwyn; Wilkinson, Geoffrey (1973). "Carboxylato-Triphenylphosphine complexes of Ruthenium, Cationic Triphenylphosphine Complexes Derived from Them, and Their Behaviour as homogeneous hydrogenation Catalysts for Alkenes". Journal of the Chemical Society, Dalton Transactions (8): 846. doi:10.1039/DT9730000846.
  2. Aquino, Manuel A.S. (1998). "Diruthenium and Diosmium Tetracarboxylates: Synthesis, Physical Properties and Applications". Coordination Chemistry Reviews. 170: 141–202. doi:10.1016/S0010-8545(97)00079-9.
  3. Cotton, F.Albert; Kim, Youngmee; Ren, Tong (1993). "Molecular Structure and Magnetic Properties of a Linear Chain Compound, Ru2(O2CCMePh2)4Cl". Polyhedron. 12 (6): 607–611. doi:10.1016/S0277-5387(00)84975-X.
  4. Martin, Don S.; Newman, Robert A.; Vlasnik, Lynn M. (1980). "Crystal structure and polarized electronic spectra for diruthenium tetraacetate chloride". Inorganic Chemistry. 19 (11): 3404–3407. doi:10.1021/ic50213a038. ISSN   0020-1669.