Acetyl bromide

Last updated
Acetyl bromide [1]
Acetyl bromide.svg
Acetyl-bromide-3D-balls.png
Names
Preferred IUPAC name
Acetyl bromide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.329 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-061-7
PubChem CID
RTECS number
  • AO5955000
UNII
UN number 1716
  • InChI=1S/C2H3BrO/c1-2(3)4/h1H3 Yes check.svgY
    Key: FXXACINHVKSMDR-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C2H3BrO/c1-2(3)4/h1H3
    Key: FXXACINHVKSMDR-UHFFFAOYAZ
  • CC(=O)Br
  • BrC(=O)C
Properties
C2H3BrO
Molar mass 122.949 g·mol−1
Density 1.663 g/mL
Melting point −96 °C (−141 °F; 177 K)
Boiling point 75 to 77 °C (167 to 171 °F; 348 to 350 K)
Hazards
GHS labelling:
GHS-pictogram-acid.svg
Danger
H314
P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P405, P501
Flash point 110 °C (230 °F; 383 K)
Safety data sheet (SDS) ILO MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Acetyl bromide is an acyl bromide compound. As is expected, it may be prepared by reaction between phosphorus tribromide and acetic acid: [2]

3 CH3COOH + PBr3 → 3 CH3COBr + H3PO3

As usual for an acid halide, acetyl bromide hydrolyzes rapidly in water, forming acetic acid and hydrobromic acid. It also reacts with alcohols and amines to produce acetate esters and acetamides, respectively.

Related Research Articles

<span class="mw-page-title-main">Acetyl group</span> Chemical group, –C(=O)CH₃

In organic chemistry, acetyl is a functional group with the chemical formula −COCH3 and the structure −C(=O)−CH3. It is sometimes represented by the symbol Ac. In IUPAC nomenclature, acetyl is called ethanoyl.

<span class="mw-page-title-main">Acetate</span> Salt compound formed from acetic acid and a base

An acetate is a salt formed by the combination of acetic acid with a base. "Acetate" also describes the conjugate base or ion typically found in aqueous solution and written with the chemical formula C
2
H
3
O
2
. The neutral molecules formed by the combination of the acetate ion and a positive ion are also commonly called "acetates". The simplest of these is hydrogen acetate with corresponding salts, esters, and the polyatomic anion CH
3
CO
2
, or CH
3
COO
.

In organic chemistry, an acyl chloride is an organic compound with the functional group −C(=O)Cl. Their formula is usually written R−COCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.

<span class="mw-page-title-main">Acyl halide</span> Oxoacid compound with an –OH group replaced by a halogen

In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

In chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed acetate esters or simply acetates. Deacetylation is the opposite reaction, the removal of an acetyl group from a chemical compound.

<span class="mw-page-title-main">Acetic anhydride</span> Organic compound with formula (CH₃CO)₂O

Acetic anhydride, or ethanoic anhydride, is the chemical compound with the formula (CH3CO)2O. Commonly abbreviated Ac2O, it is the simplest isolable anhydride of a carboxylic acid and is widely used as a reagent in organic synthesis. It is a colorless liquid that smells strongly of acetic acid, which is formed by its reaction with moisture in the air.

<span class="mw-page-title-main">Acetyl chloride</span> Organic compound (CH₃COCl)

Acetyl chloride is an acyl chloride derived from acetic acid. It belongs to the class of organic compounds called acid halides. It is a colorless, corrosive, volatile liquid. Its formula is commonly abbreviated to AcCl.

The Monsanto process is an industrial method for the manufacture of acetic acid by catalytic carbonylation of methanol. The Monsanto process has largely been supplanted by the Cativa process, a similar iridium-based process developed by BP Chemicals Ltd, which is more economical and environmentally friendly.

<span class="mw-page-title-main">Cativa process</span> Method for the manufacture of acetic acid

The Cativa process is a method for the production of acetic acid by the carbonylation of methanol. The technology, which is similar to the Monsanto process, was developed by BP Chemicals and is under license by BP Plc. The process is based on an iridium-containing catalyst, such as the complex [Ir(CO)2I2] (1).

<span class="mw-page-title-main">Knorr pyrrole synthesis</span> Chemical reaction

The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group α to a carbonyl group (2).

<span class="mw-page-title-main">Trifluoroacetic acid</span> Chemical compound

Trifluoroacetic acid (TFA) is an organofluorine compound with the chemical formula CF3CO2H. It is a haloacetic acid, with all three of the acetyl group's hydrogen atoms replaced by fluorine atoms. It is a colorless liquid with a vinegar-like odor. TFA is a stronger acid than acetic acid, having an acid ionisation constant, Ka, that is approximately 34,000 times higher, as the highly electronegative fluorine atoms and consequent electron-withdrawing nature of the trifluoromethyl group weakens the oxygen-hydrogen bond (allowing for greater acidity) and stabilises the anionic conjugate base. TFA is widely used in organic chemistry for various purposes.

Acetogenesis is a process through which acetate is produced by prokaryote microorganisms either by the reduction of CO2 or by the reduction of organic acids, rather than by the oxidative breakdown of carbohydrates or ethanol, as with acetic acid bacteria.

<span class="mw-page-title-main">Meerwein arylation</span> Organic reaction

The Meerwein arylation is an organic reaction involving the addition of an aryl diazonium salt (ArN2X) to an electron-poor alkene usually supported by a metal salt. The reaction product is an alkylated arene compound. The reaction is named after Hans Meerwein, one of its inventors who first published it in 1939.

Acetyl iodide is an organoiodine compound with the formula CH3COI. It is a colourless liquid. It is formally derived from acetic acid. Although far rarer in the laboratory than the related acetyl bromide and acetyl chloride, acetyl iodide is produced, transiently at least, on a far larger scale than any other acid halide. Specifically, it is generated by the carbonylation of methyl iodide in the Cativa and Monsanto processes, which are the main industrial processes that generate acetic acid. It is also an intermediate in the production of acetic anhydride from methyl acetate.

<span class="mw-page-title-main">Ethenone</span> Organic compound with the formula H2C=C=O

In organic chemistry, ethenone is the formal name for ketene, an organic compound with formula C2H2O or H2C=C=O. It is the simplest member of the ketene class. It is an important reagent for acetylations.

<span class="mw-page-title-main">Acetic acid</span> Colorless and faint organic acid found in vinegar

Acetic acid, systematically named ethanoic acid, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH. Vinegar is at least 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water. It has been used, as a component of vinegar, throughout history from at least the third century BC.

<span class="mw-page-title-main">Acetyl fluoride</span> Chemical compound

Acetyl fluoride is an acyl halide with the chemical formula CH3COF. The formula is commonly abbreviated AcF. This chemical is corrosive. This chemical is also known as Acetyl fluoride, 557-99-3 or Methylcarbonyl fluouride. It carries a oxo group at position 1.

<span class="mw-page-title-main">Acetyl nitrate</span> Chemical compound

Acetyl nitrate is the organic compound with the formula CH3C(O)ONO2. It is classified as the mixed anhydride of nitric and acetic acids. It is a colorless explosive liquid that fumes in moist air.

<span class="mw-page-title-main">Cyanuric bromide</span> Chemical compound

Cyanuric bromide is a heterocyclic compound with formula C3N3Br3. It contains a six-membered ring of alternating nitrogen and carbon atoms, with a bromine atom attached to each carbon. It is formed by the spontaneous trimerisation of cyanogen bromide.

<span class="mw-page-title-main">Acetyl hypochlorite</span> Chemical compound

Acetyl hypochlorite, also known as chlorine acetate, is a chemical compound with the formula CH3COOCl. It is a photosensitive colorless liquid that is a short lived intermediate in the Hunsdiecker reaction.

References

  1. Acetyl bromide [ permanent dead link ] at Sigma-Aldrich
  2. Theodore M. Burton and Ed. F. Degering (1940). "The Preparation of Acetyl Bromide". J. Am. Chem. Soc. 62: 227. doi:10.1021/ja01858a502.