Nedaplatin

Last updated
Nedaplatin
Nedaplatin.png
Nedaplatin 3D BS.png
Clinical data
AHFS/Drugs.com International Drug Names
Routes of
administration
IV
ATC code
  • none
Legal status
Legal status
  • In general: ℞ (Prescription only)
Identifiers
  • Diammine[(hydroxy-κO)acetato(2-)-κO]platinum
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
CompTox Dashboard (EPA)
Chemical and physical data
Formula C2H8N2O3Pt
Molar mass 303.181 g·mol−1
3D model (JSmol)
  • C(C(=O)[O-])[O-].N.N.[Pt+2]

  • coordination form: O=C1O[Pt-2]([NH3+])([NH3+])OC1
  • InChI=1S/C2H3O3.2H3N.Pt/c3-1-2(4)5;;;/h1H2,(H,4,5);2*1H3;/q-1;;;+2/p-1
  • Key:GYAVMUDJCHAASE-UHFFFAOYSA-M
   (verify)

Nedaplatin (INN, marketed under the tradename Aqupla) is a platinum-based antineoplastic drug which is used for cancer chemotherapy. [1] The complex consists of two ammine ligands and the dianion derived from glycolic acid.

Platinum-based drugs are widely employed as antineoplastic agents, especially cisplatin and carboplatin. Due to issues of their toxicity and number of cisplatin-resistant cancer cells, other platinum derivatives have been developed. Nedaplatin is one example of such new drugs. [2]

Related Research Articles

<span class="mw-page-title-main">Chemotherapy</span> Treatment of cancer using drugs that inhibit cell division or kill cells

Chemotherapy is a type of cancer treatment that uses one or more anti-cancer drugs as part of a standardized chemotherapy regimen. Chemotherapy may be given with a curative intent or it may aim to prolong life or to reduce symptoms. Chemotherapy is one of the major categories of the medical discipline specifically devoted to pharmacotherapy for cancer, which is called medical oncology.

<span class="mw-page-title-main">Carboplatin</span> Medication used to treat cancer

Carboplatin, sold under the trade name Paraplatin among others, is a chemotherapy medication used to treat a number of forms of cancer. This includes ovarian cancer, lung cancer, head and neck cancer, brain cancer, and neuroblastoma. It is used by injection into a vein.

<span class="mw-page-title-main">Cisplatin</span> Pharmaceutical drug

Cisplatin is a chemotherapy medication used to treat a number of cancers. These include testicular cancer, ovarian cancer, cervical cancer, breast cancer, bladder cancer, head and neck cancer, esophageal cancer, lung cancer, mesothelioma, brain tumors and neuroblastoma. It is given by injection into a vein.

<span class="mw-page-title-main">Oxaliplatin</span> Pharmaceutical drug

Oxaliplatin, sold under the brand name Eloxatin among others, is a cancer medication used to treat colorectal cancer. It is given by injection into a vein.

<span class="mw-page-title-main">Tirapazamine</span>

Tirapazamine (SR-[[4233]]) is an experimental anticancer drug that is activated to a toxic radical only at very low levels of oxygen (hypoxia). Such levels are common in human solid tumors, a phenomenon known as tumor hypoxia. Thus, tirapazamine is activated to its toxic form preferentially in the hypoxic areas of solid tumors. Cells in these regions are resistant to killing by radiotherapy and most anticancer drugs. Thus the combination of tirapazamine with conventional anticancer treatments is particularly effective. As of 2006, tirapazamine is undergoing phase III testing in patients with head and neck cancer and gynecological cancer, and similar trials are being undertaken for other solid tumor types.

<span class="mw-page-title-main">Altretamine</span>

Altretamine, also called hexamethylmelamine, is an antineoplastic agent. It was approved by the U.S. FDA in 1990.

Triplatin tetranitrate is a platinum-based cytotoxic drug that underwent clinical trials for the treatment of human cancer. The drug acts by forming adducts with cellular DNA, preventing DNA transcription and replication, thereby inducing apoptosis. Other platinum-containing anticancer drugs include cisplatin, carboplatin, and oxaliplatin.

An alkylating antineoplastic agent is an alkylating agent used in cancer treatment that attaches an alkyl group (CnH2n+1) to DNA.

<span class="mw-page-title-main">Satraplatin</span>

Satraplatin is a platinum-based antineoplastic agent that was under investigation as a treatment of patients with advanced prostate cancer who have failed previous chemotherapy. It has not yet received approval from the U.S. Food and Drug Administration. First mentioned in the medical literature in 1993, satraplatin is the first orally active platinum-based chemotherapeutic drug; other available platinum analogues—cisplatin, carboplatin, and oxaliplatin—must be given intravenously.

<span class="mw-page-title-main">Picoplatin</span> Chemical compound

Picoplatin is a platinum-based antineoplastic agent in clinical development by Poniard Pharmaceuticals for the treatment of patients with solid tumors.

Lipoplatin is a nanoparticle of 110 nm average diameter composed of lipids and cisplatin. This new drug has successfully finished Phase I, Phase II, and Phase III human clinical trials. It has shown superiority to cisplatin in combination with paclitaxel as a chemotherapy regimen in non-small cell lung cancer (NSCLC) adenocarcinomas.

<span class="mw-page-title-main">Stephen J. Lippard</span> American chemist

Stephen James Lippard is the Arthur Amos Noyes Emeritus Professor of Chemistry at the Massachusetts Institute of Technology. He is considered one of the founders of bioinorganic chemistry, studying the interactions of nonliving substances such as metals with biological systems. He is also considered a founder of metalloneurochemistry, the study of metal ions and their effects in the brain and nervous system. He has done pioneering work in understanding protein structure and synthesis, the enzymatic functions of methane monooxygenase (MMO), and the mechanisms of cisplatin anticancer drugs. His work has applications for the treatment of cancer, for bioremediation of the environment, and for the development of synthetic methanol-based fuels.

<span class="mw-page-title-main">NAMI-A</span> Chemical compound

NAMI-A, KP1019 and BOLD-100 are three ruthenium anticancer agents that have entered clinical trials. Contrary to what can be found in some papers, "the nickname NAMI is not the acronym of “New Anticancer Metastasis Inhibitor”, but has a much more prosaic origin. It was created by a student as a short-form name of the chemical formula of the complex: “NA” comes from the symbol for sodium and “MI” from the word imidazole. The corresponding imidazolium salt was simply called NAMI-A to signify that it was an upgraded version of the prototype NAMI".

Platinum-based antineoplastic drugs are chemotherapeutic agents used to treat cancer. They are coordination complexes of platinum. These drugs are used to treat almost half of people receiving chemotherapy for cancer. In this form of chemotherapy, commonly used drugs include cisplatin, oxaliplatin, and carboplatin, but several have been proposed or are under development. Addition of platinum-based chemotherapy drugs to chemoradiation in women with early cervical cancer seems to improve survival and reduce risk of recurrence.

Antineoplastic resistance, often used interchangeably with chemotherapy resistance, is the resistance of neoplastic (cancerous) cells, or the ability of cancer cells to survive and grow despite anti-cancer therapies. In some cases, cancers can evolve resistance to multiple drugs, called multiple drug resistance.

<span class="mw-page-title-main">Phenanthriplatin</span>

Phenanthriplatin or cis-[Pt(NH3)2-(phenanthridine)Cl]NO3 is a new drug candidate. It belongs to a family of platinum(II)-based agents which includes cisplatin, oxaliplatin and carboplatin. Phenanthriplatin was discovered by Professor Stephen J. Lippard at Massachusetts Institute of Technology and is currently being developed by Blend Therapeutics for its potential use in human cancer therapy.

Arabinopyranosyl-<i>N</i>-methyl-<i>N</i>-nitrosourea

Arabinopyranosyl-N-methyl-N-nitrosourea, also known as Aranose (Араноза) is a cytostatic anticancer chemotherapeutic drug of an alkylating type. Chemically it is a nitrosourea derivative. It was developed in the Soviet Union in the 1970s. It was claimed by its developers that its advantages over other nitrosoureas are a relatively low hematological toxicity and a wider therapeutic index, which allows for its outpatient administration.

<span class="mw-page-title-main">Dicycloplatin</span>

Dicycloplatin is a chemotherapy medication used to treat a number of cancers which includes the non-small-cell lung carcinoma and prostate cancer.

<span class="mw-page-title-main">KP1019</span>

KP1019, or indazole trans-[tetrachlorobis(1H-indazole)ruthenate(III)], is one of four ruthenium anti-cancer drugs to enter into phase I clinical trials, the others being BOLD-100, NAMI-A and TLD-1433. Research into ruthenium-based drugs has provided novel alternatives for platinum-based chemotherapeutics such as Cisplatin and its derivatives. KP1019 is useful for metastatic tumors and cis-platin resistant tumors. It exhibits potent cytotoxicity against primary tumors, particularly in colorectal cancer.

<span class="mw-page-title-main">Lobaplatin</span>

Lobaplatin is a platinum-based antineoplastic metallodrug approved exclusively in China for the treatment of small cell lung cancer, inoperable metastatic breast cancer and chronic myelogenous leukaemia. The drug is a third-generation analogue of cisplatin, the first globally approved and widely used platinum-based anticancer drug.

References

  1. Apps MG, Choi EH, Wheate NJ (August 2015). "The state-of-play and future of platinum drugs". Endocrine-Related Cancer. 22 (4): R219-33. doi: 10.1530/ERC-15-0237 . PMID   26113607.
  2. Johnstone TC, Park GY, Lippard SJ (January 2014). "Understanding and improving platinum anticancer drugs--phenanthriplatin". Anticancer Research. 34 (1): 471–6. PMC   3937549 . PMID   24403503.