Hydroxycarbamide

Last updated

Hydroxycarbamide
Hydroxyurea.svg
Hydroxyurea-3D-balls.png
Clinical data
Trade names Droxia, Hydrea, Siklos, others
Other namesHydroxyurea (USAN US)
AHFS/Drugs.com Monograph
MedlinePlus a682004
License data
Pregnancy
category
  • AU:D
Routes of
administration
By mouth
ATC code
Legal status
Legal status
Pharmacokinetic data
Metabolism Liver (to CO2 and urea)
Elimination half-life 2–4 hours
Excretion Kidney and lungs
Identifiers
  • Hydroxyurea
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
NIAID ChemDB
CompTox Dashboard (EPA)
ECHA InfoCard 100.004.384 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula CH4N2O2
Molar mass 76.055 g·mol−1
3D model (JSmol)
Melting point 133 to 136 °C (271 to 277 °F)
  • O=C(N)NO
  • InChI=1S/CH4N2O2/c2-1(4)3-5/h5H,(H3,2,3,4) Yes check.svgY
  • Key:VSNHCAURESNICA-UHFFFAOYSA-N Yes check.svgY
   (verify)

Hydroxycarbamide, also known as hydroxyurea, is an antimetabolite medication used in sickle-cell disease, essential thrombocythemia, chronic myelogenous leukemia, polycythemia vera, and cervical cancer. [4] [5] In sickle-cell disease it increases fetal hemoglobin and decreases the number of attacks. [4] It is taken by mouth. [4]

Contents

Common side effects include bone marrow suppression, fevers, loss of appetite, psychiatric problems, shortness of breath, and headaches. [4] [5] There is also concern that it increases the risk of later cancers. [4] Use during pregnancy is typically harmful to the fetus. [4] Hydroxycarbamide is in the antineoplastic family of medications. It is believed to work by blocking the making of DNA. [4]

Hydroxycarbamide was approved for medical use in the United States in 1967. [4] It is on the World Health Organization's List of Essential Medicines. [6] Hydroxycarbamide is available as a generic medication. [4]

Medical uses

Hydroxycarbamide is used for the following indications:

Side effects

Reported side effects are: neurological reactions (e.g., headache, dizziness, drowsiness, disorientation, hallucinations, and convulsions), nausea, vomiting, diarrhea, constipation, mucositis, anorexia, stomatitis, bone marrow toxicity (dose-limiting toxicity; may take 7–21 days to recover after the drug has been discontinued), megaloblastic anemia, thrombocytopenia, bleeding, hemorrhage, gastrointestinal ulceration and perforation, immunosuppression, leukopenia, alopecia (hair loss), skin rashes (e.g., maculopapular rash), erythema, pruritus, vesication or irritation of the skin and mucous membranes, pulmonary edema, abnormal liver enzymes, creatinine and blood urea nitrogen. [12]

Due to its negative effect on the bone marrow, regular monitoring of the full blood count is vital, as well as early response to possible infections. In addition, renal function, uric acid and electrolytes, as well as liver enzymes, are commonly checked. [13] Moreover, because of this, its use in people with leukopenia, thrombocytopenia or severe anemia is contraindicated. [14]

Hydroxycarbamide has been used primarily for the treatment of myeloproliferative diseases, which has an inherent risk of transforming to acute myeloid leukemia. There has been a longstanding concern that hydroxycarbamide itself carries a leukemia risk, but large studies have shown that the risk is either absent or very small. Nevertheless, it has been a barrier for its wider use in patients with sickle-cell disease. [15]

Mechanism of action

Hydroxycarbamide decreases the production of deoxyribonucleotides [16] via inhibition of the enzyme ribonucleotide reductase by scavenging tyrosyl free radicals as they are involved in the reduction of nucleoside diphosphates (NDPs). [15] Additionally, hydroxycarbamide causes production of reactive oxygen species in cells, leading to disassembly of replicative DNA polymerase enzymes and arresting DNA replication. [17]

In the treatment of sickle-cell disease, hydroxycarbamide increases the concentration of fetal hemoglobin. The precise mechanism of action is not yet clear, but it appears that hydroxycarbamide increases nitric oxide levels, causing soluble guanylyl cyclase activation with a resultant rise in cyclic GMP, and the activation of gamma globin gene expression and subsequent gamma chain synthesis necessary for fetal hemoglobin (HbF) production (which does not polymerize and deform red blood cells like the mutated HbS, responsible for sickle cell disease). Adult red cells containing more than 1% HbF are termed F cells. These cells are progeny of a small pool of immature committed erythroid precursors (BFU-e) that retain the ability to produce HbF. Hydroxyurea also suppresses the production of granulocytes in the bone marrow which has a mild immunosuppressive effect particularly at vascular sites where sickle cells have occluded blood flow. [15] [18]

Natural occurrence

Hydroxyurea has been reported as endogenous in human blood plasma at concentrations of approximately 30 to 200 ng/ml. [19]

Chemistry

Hydroxycarbamide
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
MutagenReproductive toxicity
GHS labelling:
GHS-pictogram-silhouette.svg
Danger
H340, H361
P201, P202, P281, P308+P313, P405, P501

Hydroxyurea has been prepared in many different ways since its initial synthesis in 1869. [20] The original synthesis by Dresler and Stein was based around the reaction of hydroxylamine hydrochloride and potassium cyanate. [20] Hydroxyurea lay dormant for more than fifty years until it was studied as part of an investigation into the toxicity of protein metabolites. [21] Due to its chemical properties hydroxyurea was explored as an antisickling agent in the treatment of hematological conditions.

One common mechanism for synthesizing hydroxyurea is by the reaction of calcium cyanate with hydroxylamine nitrate in absolute ethanol and by the reaction of a cyanate salt and hydroxylamine hydrochloride in aqueous solution. [22] Hydroxyurea has also been prepared by converting a quaternary ammonium anion exchange resin from the chloride form to the cyanate form with sodium cyanate and reacting the resin in the cyanate form with hydroxylamine hydrochloride. This method of hydroxyurea synthesis was patented by Hussain et al. (2015). [23]

Pharmacology

Hydroxyurea is a monohydroxyl-substituted urea (hydroxycarbamate) antimetabolite. Similar to other antimetabolite anti-cancer drugs, it acts by disrupting the DNA replication process of dividing cancer cells in the body. Hydroxyurea selectively inhibits ribonucleoside diphosphate reductase, an enzyme required to convert ribonucleoside diphosphates into deoxyribonucleoside diphosphates, thereby preventing cells from leaving the G1/S phase of the cell cycle. This agent also exhibits radiosensitizing activity by maintaining cells in the radiation-sensitive G1 phase and interfering with DNA repair. [24]

Biochemical research has explored its role as a DNA replication inhibitor [25] which causes deoxyribonucleotide depletion and results in DNA double strand breaks near replication forks (see DNA repair). Repair of DNA damaged by chemicals or irradiation is also inhibited by hydroxyurea, offering potential synergy between hydroxyurea and radiation or alkylating agents. [26]

Hydroxyurea has many pharmacological applications under the Medical Subject Headings classification system: [24]

Society and culture

Brand names

Brand names include: Hydrea, Litalir, Droxia, and Siklos.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Thalassemia</span> Family of inherited blood disorders

Thalassemias are inherited blood disorders that manifest as the production of reduced or zero quantities of hemoglobin. Symptoms depend on the type of thalassemia and can vary from none to severe, including death. Often there is mild to severe anemia as thalassemia can affect the production of red blood cells and also affect how long the red blood cells live. Symptoms of anemia include feeling tired and having pale skin. Other symptoms of thalassemia include bone problems, an enlarged spleen, yellowish skin, pulmonary hypertension, and dark urine. Slow growth may occur in children. Clinically, thalassemia is classed as Transfusion-Dependent Thalassemia (TDT) or non-Transfusion-Dependent Thalassemia (NTDT), since this determines the principal treatment options. TDT requires regular transfusions, typically every two to five weeks. TDTs include Beta-thalassemia major, nondeletional HbH disease, survived Hb Bart's disease, and severe HbE/beta-thalassemia. NTDT does not need regular transfusions but may require transfusion in case of an anemia crisis.

<span class="mw-page-title-main">Chronic myelogenous leukemia</span> Medical condition

Chronic myelogenous leukemia (CML), also known as chronic myeloid leukemia, is a cancer of the white blood cells. It is a form of leukemia characterized by the increased and unregulated growth of myeloid cells in the bone marrow and the accumulation of these cells in the blood. CML is a clonal bone marrow stem cell disorder in which a proliferation of mature granulocytes and their precursors is found; characteristic increase in basophils is clinically relevant. It is a type of myeloproliferative neoplasm associated with a characteristic chromosomal translocation called the Philadelphia chromosome.

<span class="mw-page-title-main">Imatinib</span> Chemical compound

Imatinib, sold under the brand names Gleevec and Glivec (both marketed worldwide by Novartis) among others, is an oral targeted therapy medication used to treat cancer. Imatinib is a small molecule inhibitor targeting multiple tyrosine kinases such as CSF1R, ABL, c-KIT, FLT3, and PDGFR-β. Specifically, it is used for chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL) that are Philadelphia chromosome–positive (Ph+), certain types of gastrointestinal stromal tumors (GIST), hypereosinophilic syndrome (HES), chronic eosinophilic leukemia (CEL), systemic mastocytosis, and myelodysplastic syndrome.

<span class="mw-page-title-main">Fetal hemoglobin</span> Oxygen carrier protein in the human fetus

Fetal hemoglobin, or foetal haemoglobin is the main oxygen carrier protein in the human fetus. Hemoglobin F is found in fetal red blood cells, and is involved in transporting oxygen from the mother's bloodstream to organs and tissues in the fetus. It is produced at around 6 weeks of pregnancy and the levels remain high after birth until the baby is roughly 2–4 months old. Hemoglobin F has a different composition than adult forms of hemoglobin, allowing it to bind oxygen more strongly; this in turn enables the developing fetus to retrieve oxygen from the mother's bloodstream, which occurs through the placenta found in the mother's uterus.

<span class="mw-page-title-main">Cytarabine</span> Chemical compound (chemotherapy medication)

Cytarabine, also known as cytosine arabinoside (ara-C), is a chemotherapy medication used to treat acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic myelogenous leukemia (CML), and non-Hodgkin's lymphoma. It is given by injection into a vein, under the skin, or into the cerebrospinal fluid. There is a liposomal formulation for which there is tentative evidence of better outcomes in lymphoma involving the meninges.

<span class="mw-page-title-main">Thrombocythemia</span> Abnormally high platelet count in the blood

In hematology, thrombocythemia is a condition of high platelet (thrombocyte) count in the blood. Normal count is in the range of 150×109 to 450×109 platelets per liter of blood, but investigation is typically only considered if the upper limit exceeds 750×109/L.

<span class="mw-page-title-main">Ribonucleotide reductase</span> Class of enzymes

Ribonucleotide reductase (RNR), also known as ribonucleoside diphosphate reductase, is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides. It catalyzes this formation by removing the 2'-hydroxyl group of the ribose ring of nucleoside diphosphates. This reduction produces deoxyribonucleotides. Deoxyribonucleotides in turn are used in the synthesis of DNA. The reaction catalyzed by RNR is strictly conserved in all living organisms. Furthermore, RNR plays a critical role in regulating the total rate of DNA synthesis so that DNA to cell mass is maintained at a constant ratio during cell division and DNA repair. A somewhat unusual feature of the RNR enzyme is that it catalyzes a reaction that proceeds via a free radical mechanism of action. The substrates for RNR are ADP, GDP, CDP and UDP. dTDP is synthesized by another enzyme from dTMP.

<span class="mw-page-title-main">Mercaptopurine</span> Chemical compound

Mercaptopurine (6-MP), sold under the brand name Purinethol among others, is a medication used for cancer and autoimmune diseases. Specifically it is used to treat acute lymphocytic leukemia (ALL), acute promyelocytic leukemia (APL), Crohn's disease, and ulcerative colitis. For acute lymphocytic leukemia it is generally used with methotrexate. It is taken orally.

<span class="mw-page-title-main">Antimetabolite</span> Chemical that inhibits the use of a metabolite

An antimetabolite is a chemical that inhibits the use of a metabolite, which is another chemical that is part of normal metabolism. Such substances are often similar in structure to the metabolite that they interfere with, such as the antifolates that interfere with the use of folic acid; thus, competitive inhibition can occur, and the presence of antimetabolites can have toxic effects on cells, such as halting cell growth and cell division, so these compounds are used in chemotherapy for cancer.

<span class="mw-page-title-main">History of cancer chemotherapy</span>

The era of cancer chemotherapy began in the 1940s with the first use of nitrogen mustards and folic acid antagonist drugs. The targeted therapy revolution has arrived, but many of the principles and limitations of chemotherapy discovered by the early researchers still apply.

<span class="mw-page-title-main">Azacitidine</span> Chemical compound

Azacitidine, sold under the brand name Vidaza among others, is a medication used for the treatment of myelodysplastic syndrome, myeloid leukemia, and juvenile myelomonocytic leukemia. It is a chemical analog of cytidine, a nucleoside in DNA and RNA. Azacitidine and its deoxy derivative, decitabine were first synthesized in Czechoslovakia as potential chemotherapeutic agents for cancer.

<span class="mw-page-title-main">Anagrelide</span> Chemical compound

Anagrelide is a drug used for the treatment of essential thrombocytosis, or overproduction of blood platelets. It also has been used in the treatment of chronic myeloid leukemia.

<span class="mw-page-title-main">Sodium phenylbutyrate</span> Chemical compound

Sodium phenylbutyrate, sold under the brand name Buphenyl among others, is a salt of an aromatic fatty acid, 4-phenylbutyrate (4-PBA) or 4-phenylbutyric acid. The compound is used to treat urea cycle disorders, because its metabolites offer an alternative pathway to the urea cycle to allow excretion of excess nitrogen.

<span class="mw-page-title-main">Decitabine</span> Medication for the treatment of conditions where certain blood cells are dysfunctional,

Decitabine, sold under the brand name Dacogen among others, acts as a nucleic acid synthesis inhibitor. It is a medication for the treatment of myelodysplastic syndromes, a class of conditions where certain blood cells are dysfunctional, and for acute myeloid leukemia (AML). Chemically, it is a cytidine analog.

<span class="mw-page-title-main">Acute myeloblastic leukemia with maturation</span> Medical condition

Acute myeloblastic leukemia with maturation (M2) is a subtype of acute myeloid leukemia (AML).

<span class="mw-page-title-main">Antifolate</span> Class of antimetabolite medications

Antifolates are a class of antimetabolite medications that antagonise (that is, block) the actions of folic acid (vitamin B9). Folic acid's primary function in the body is as a cofactor to various methyltransferases involved in serine, methionine, thymidine and purine biosynthesis. Consequently, antifolates inhibit cell division, DNA/RNA synthesis and repair and protein synthesis. Some such as proguanil, pyrimethamine and trimethoprim selectively inhibit folate's actions in microbial organisms such as bacteria, protozoa and fungi. The majority of antifolates work by inhibiting dihydrofolate reductase (DHFR).

Purine analogues are antimetabolites that mimic the structure of metabolic purines.

<span class="mw-page-title-main">Sickle cell disease</span> Medical condition

Sickle cell disease (SCD), also simply called sickle cell, is a group of hemoglobin-related blood disorders that are typically inherited. The most common type is known as sickle cell anemia. Sickle cell anemia results in an abnormality in the oxygen-carrying protein haemoglobin found in red blood cells. This leads to the red blood cells adopting an abnormal sickle-like shape under certain circumstances; with this shape, they are unable to deform as they pass through capillaries, causing blockages. Problems in sickle cell disease typically begin around 5 to 6 months of age. A number of health problems may develop, such as attacks of pain in joints, anemia, swelling in the hands and feet, bacterial infections, dizziness and stroke. The probability of severe symptoms, including long-term pain, increases with age. Without treatment, people with SCD rarely reach adulthood but with good healthcare, median life expectancy is between 58 and 66 years. All the major organs are affected by sickle cell disease. The liver, heart, kidneys, gallbladder, eyes, bones, and joints also can suffer damage from the abnormal functions of the sickle cells, and their inability to flow through the small blood vessels correctly.

VAMP regimen or VAMP chemotherapy is a four-drug combination chemotherapy regimen, used today in the treatment of Hodgkin lymphoma. It was one of the earliest combination chemotherapy regimens, originally developed as a treatment for childhood leukemia by a group of researchers at the National Cancer Institute led by Emil Frei and Emil Freireich. The first clinical trial of VAMP began in 1961. Because it was the first time that four chemotherapeutic agents were used at once, the trial was highly controversial at its time. Although new combination chemotherapy regimens have replaced the use of VAMP in the treatment of childhood leukemia, VAMP is considered an important precursor to modern treatments, confirming the effectiveness of combination chemotherapy and leading to the use of combination chemotherapy regimens to treat other types of cancer.

<span class="mw-page-title-main">Bisantrene</span> Chemical compound

Bisantrene is an anthracenyl bishydrazone with anthracycline-like antineoplastic activity and an antimetabolite. Bisantrene intercalates with and disrupts the configuration of DNA, resulting in DNA single-strand breaks, DNA-protein crosslinking, and inhibition of DNA replication. This agent is similar to doxorubicin in chemotherapeutic activity, but unlike anthracyclines like doxorubicin, it exhibits little cardiotoxicity.

References

  1. "FDA-sourced list of all drugs with black box warnings (Use Download Full Results and View Query links.)". nctr-crs.fda.gov. FDA . Retrieved 22 October 2023.
  2. "Xromi- hydroxyurea solution". DailyMed. 8 April 2024. Retrieved 18 May 2024.
  3. "Siklos EPAR". European Medicines Agency. 9 July 2003. Retrieved 24 July 2024.
  4. 1 2 3 4 5 6 7 8 9 "Hydroxyurea". The American Society of Health-System Pharmacists. Retrieved 8 December 2016.
  5. 1 2 "Hydrea 500 mg Hard Capsules – Summary of Product Characteristics (SPC) – (eMC)". www.medicines.org.uk. Archived from the original on 20 December 2016. Retrieved 14 December 2016.
  6. World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl: 10665/325771 . WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
  7. Harrison CN, Campbell PJ, Buck G, Wheatley K, East CL, Bareford D, et al. (July 2005). "Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia". The New England Journal of Medicine. 353 (1): 33–45. doi: 10.1056/NEJMoa043800 . PMID   16000354.
  8. Lanzkron S, Strouse JJ, Wilson R, Beach MC, Haywood C, Park H, et al. (June 2008). "Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease". Annals of Internal Medicine. 148 (12): 939–955. doi:10.7326/0003-4819-148-12-200806170-00221. PMC   3256736 . PMID   18458272.
  9. Sharma VK, Dutta B, Ramam M (2004). "Hydroxyurea as an alternative therapy for psoriasis". Indian Journal of Dermatology, Venereology and Leprology. 70 (1): 13–17. PMID   17642550. Archived from the original on 3 July 2009.
  10. Lim KH, Pardanani A, Butterfield JH, Li CY, Tefferi A (December 2009). "Cytoreductive therapy in 108 adults with systemic mastocytosis: Outcome analysis and response prediction during treatment with interferon-alpha, hydroxyurea, imatinib mesylate or 2-chlorodeoxyadenosine". American Journal of Hematology. 84 (12): 790–794. doi:10.1002/ajh.21561. PMID   19890907.
  11. Dalziel K, Round A, Stein K, Garside R, Price A (July 2004). "Effectiveness and cost-effectiveness of imatinib for first-line treatment of chronic myeloid leukaemia in chronic phase: a systematic review and economic analysis". Health Technology Assessment. 8 (28): iii, 1-iii120. doi: 10.3310/hta8280 . PMID   15245690.
  12. Liebelt EL, Balk SJ, Faber W, Fisher JW, Hughes CL, Lanzkron SM, et al. (August 2007). "NTP-CERHR expert panel report on the reproductive and developmental toxicity of hydroxyurea". Birth Defects Research. Part B, Developmental and Reproductive Toxicology. 80 (4): 259–366. doi:10.1002/bdrb.20123. PMID   17712860.
  13. Longe JL (2002). Gale Encyclopedia Of Cancer: A Guide To Cancer And Its Treatments . Detroit: Thomson Gale. pp.  514–516. ISBN   978-1-4144-0362-5.
  14. "HYDREA" (PDF). Accessdata.fda.gov. US Food and Drug Administration.
  15. 1 2 3 Platt OS (March 2008). "Hydroxyurea for the treatment of sickle cell anemia". The New England Journal of Medicine. 358 (13): 1362–1369. doi:10.1056/NEJMct0708272. PMID   18367739.
  16. "hydroxyurea" at Dorland's Medical Dictionary
  17. Shaw A (October 2024). "Revised mechanism of hydroxyurea-induced cell cycle arrest and an improved alternative". Proceedings of the National Academy of Sciences. 121 (42): e2404470121. Bibcode:2024PNAS..12104470S. doi:10.1073/pnas.2404470121. PMC   11494364 . PMID   39374399.
  18. Cokic VP, Smith RD, Beleslin-Cokic BB, Njoroge JM, Miller JL, Gladwin MT, et al. (January 2003). "Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase". The Journal of Clinical Investigation. 111 (2): 231–239. doi:10.1172/JCI16672. PMC   151872 . PMID   12531879.
  19. Kettani T, Cotton F, Gulbis B, Ferster A, Kumps A (February 2009). "Plasma hydroxyurea determined by gas chromatography-mass spectrometry". Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences. 877 (4): 446–450. doi:10.1016/j.jchromb.2008.12.048. PMID   19144580.
  20. 1 2 Dresler WF, Stein R (1869). "Ueber den Hydroxylharnstoff". Justus Liebigs Ann. Chem. 150 (2): 1317–22. doi:10.1002/jlac.18691500212.
  21. Rees DC (April 2011). "The rationale for using hydroxycarbamide in the treatment of sickle cell disease". Haematologica. 96 (4): 488–491. doi:10.3324/haematol.2011.041988. PMC   3069221 . PMID   21454878.
  22. US 2705727,Graham PJ,"Synthesis of Ureas", assigned to E.I. du Pont de Nemours & Co., Wilmington, DE
  23. Hussain KA, Abid DS, Adam GA (2016). "New Method for Synthesis of Hydroxyurea and Some of its Polymer Supported Derivatives As New Controlled Release Drugs". Journal of Basrah Research. 41 (1). doi:10.13140/RG.2.1.3607.2720.
  24. 1 2 "Hydroxyurea". PubChem. U.S. National Library of Medicine. Archived from the original on 18 May 2017.
  25. Koç A, Wheeler LJ, Mathews CK, Merrill GF (January 2004). "Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools". The Journal of Biological Chemistry. 279 (1): 223–230. doi: 10.1074/jbc.M303952200 . PMID   14573610. S2CID   2675195.[ permanent dead link ]
  26. Yarbro JW (June 1992). "Mechanism of action of hydroxyurea". Seminars in Oncology. 19 (3 Suppl 9): 1–10. PMID   1641648.