Cyclophosphamide

Last updated
Cyclophosphamide
Cyclophosphamide.svg
R-cyclophosphamide-from-xtal-1996-3D-balls.png
Clinical data
Pronunciation /ˌsklˈfɒsfəˌmd,-lə-/ [1] [2]
Trade names Lyophilized Cytoxan, Endoxan, Cytoxan, Neosar, Procytox, Revimmune, Cycloblastin
AHFS/Drugs.com Monograph
MedlinePlus a682080
Pregnancy
category
  • AU:D
Routes of
administration
By mouth, by injection into a vein
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)
  • CA: ℞-only
  • UK: POM (Prescription only)
  • US: ℞-only
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability >75% (by mouth)
Protein binding >60%
Metabolism Liver
Elimination half-life 3–12 hours
Excretion Kidney
Identifiers
  • (RS)-N,N-bis(2-chloroethyl)-1,3,2-oxazaphosphinan-2-amine 2-oxide
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.000.015 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C7H15Cl2N2O2P
Molar mass 261.08 g·mol−1
3D model (JSmol)
Melting point 2 °C (36 °F)
  • O=P1(OCCCN1)N(CCCl)CCCl
  • InChI=1S/C7H15Cl2N2O2P/c8-2-5-11(6-3-9)14(12)10-4-1-7-13-14/h1-7H2,(H,10,12) Yes check.svgY
  • Key:CMSMOCZEIVJLDB-UHFFFAOYSA-N Yes check.svgY
   (verify)

Cyclophosphamide (CP), also known as cytophosphane among other names, [3] is a medication used as chemotherapy and to suppress the immune system. [4] As chemotherapy it is used to treat lymphoma, multiple myeloma, leukemia, ovarian cancer, breast cancer, small cell lung cancer, neuroblastoma, and sarcoma. [4] As an immune suppressor it is used in nephrotic syndrome, granulomatosis with polyangiitis, and following organ transplant, among other conditions. [4] [5] It is taken by mouth or injection into a vein. [4]

Contents

Most people develop side effects. [4] Common side effects include low white blood cell counts, loss of appetite, vomiting, hair loss, and bleeding from the bladder. [4] Other severe side effects include an increased future risk of cancer, infertility, allergic reactions, and pulmonary fibrosis. [4] Cyclophosphamide is in the alkylating agent and nitrogen mustard family of medications. [4] It is believed to work by interfering with the duplication of DNA and the creation of RNA. [4]

Cyclophosphamide was approved for medical use in the United States in 1959. [4] It is on the World Health Organization's List of Essential Medicines. [6]

Medical uses

Cyclophosphamide is used to treat cancers and autoimmune diseases. It is used to quickly control the disease. Due to its toxicity, it is replaced as soon as possible by less toxic drugs. Regular and frequent laboratory evaluations are required to monitor kidney function, avoid drug-induced bladder complications and screen for bone marrow toxicity.[ citation needed ]

Cancer

A Cyclophosphamide IV drip Cyclophosphamide iv.jpg
A Cyclophosphamide IV drip

The main use of cyclophosphamide is with other chemotherapy agents in the treatment of lymphomas, some forms of brain cancer, neuroblastoma, leukemia and some solid tumors. [7]

Autoimmune diseases

Cyclophosphamide decreases the immune system's response, and although concerns about toxicity restrict its use to patients with severe disease, it remains an important treatment for life-threatening autoimmune diseases where disease-modifying antirheumatic drugs (DMARDs) have been ineffective. For example, systemic lupus erythematosus with severe lupus nephritis may respond to pulsed cyclophosphamide. Cyclophosphamide is also used to treat minimal change disease, [8] severe rheumatoid arthritis, granulomatosis with polyangiitis, [5] Goodpasture syndrome [9] and multiple sclerosis. [10]

Because of its potential side effects such as amenorrhea or ovarian failure, cyclophosphamide is used for early phases of treatment and later substituted by other medications, such as mycophenolic acid or azathioprine. [11] [12]

AL amyloidosis

Cyclophosphamide, used in combination with thalidomide or lenalidomide and dexamethasone has documented efficacy as an off-label treatment of AL amyloidosis. It appears to be an alternative to the more traditional treatment with melphalan in people who are ill-suited for autologous stem cell transplant. [13] [7]

Graft-versus-host disease

Graft-versus-host disease (GVHD) is a major barrier for allogeneic stem cell transplant because of the immune reactions of donor T cell against the person receiving them. GVHD can often be avoided by T-cell depletion of the graft. [14] The use of a high dose cyclophosphamide post-transplant in a half matched or haploidentical donor hematopoietic stem cell transplantation reduces GVHD, even after using a reduced conditioning regimen. [15] [16]

Contraindications

Like other alkylating agents, cyclophosphamide is teratogenic and contraindicated in pregnant women (pregnancy category D) except for life-threatening circumstances in the mother. Additional relative contraindications to the use of cyclophosphamide include lactation, active infection, neutropenia or bladder toxicity. [7]

Cyclophosphamide is a pregnancy category D drug and causes birth defects. First trimester exposure to cyclophosphamide for the treatment of cancer or lupus displays a pattern of anomalies labeled "cyclophosphamide embryopathy", including growth restriction, ear and facial abnormalities, absence of digits and hypoplastic limbs. [17]

Side effects

Adverse drug reactions from cyclophosphamide are related to the cumulative medication dose and include chemotherapy-induced nausea and vomiting, [18] bone marrow suppression, [19] stomach ache, hemorrhagic cystitis, diarrhea, darkening of the skin/nails, alopecia (hair loss) or thinning of hair, changes in color and texture of the hair, lethargy, and profound gonadotoxicity. Other side effects may include easy bruising/bleeding, joint pain, mouth sores, slow-healing existing wounds, unusual decrease in the amount of urine or unusual tiredness or weakness.[ citation needed ] Potential side effects also include leukopenia, infection, bladder toxicity, and cancer. [20]

Pulmonary injury appears rare, [21] but can present with two clinical patterns: an early, acute pneumonitis and a chronic, progressive fibrosis. [22] Cardiotoxicity is a major problem with people treated with higher dose regimens. [23]

High-dose intravenous cyclophosphamide can cause the syndrome of inappropriate antidiuretic hormone secretion (SIADH) and a potentially fatal hyponatremia when compounded by intravenous fluids administered to prevent drug-induced cystitis. [24] While SIADH has been described primarily with higher doses of cyclophosphamide, it can also occur with the lower doses used in the management of inflammatory disorders. [25]

Bladder bleeding

Acrolein is toxic to the bladder epithelium and can lead to hemorrhagic cystitis, which is associated with microscopic or gross hematuria and occasionally dysuria. [26] Risks of hemorrhagic cystitis can be minimized with adequate fluid intake, avoidance of nighttime dosage and mesna (sodium 2-mercaptoethane sulfonate), a sulfhydryl donor which binds and detoxifies acrolein. [27] Intermittent dosing of cyclophosphamide decreases cumulative drug dose, reduces bladder exposure to acrolein and has equal efficacy to daily treatment in the management of lupus nephritis. [28]

Infection

Neutropenia or lymphopenia arising secondary to cyclophosphamide usage can predispose people to a variety of bacterial, fungal and opportunistic infections. [29] No published guidelines cover PCP prophylaxis for people with rheumatological diseases receiving immunosuppressive drugs, but some advocate its use when receiving high-dose medication. [30] [31]

Infertility

Cyclophosphamide has been found to significantly increase the risk of premature menopause in females and of infertility in males and females, the likelihood of which increases with cumulative drug dose and increasing patient age. Such infertility is usually temporary, but can be permanent. [32] The use of leuprorelin in women of reproductive age before administration of intermittently dosed cyclophosphamide may diminish the risks of premature menopause and infertility. [33]

Cancer

Cyclophosphamide is carcinogenic and may increase the risk of developing lymphomas, leukemia, skin cancer, transitional cell carcinoma of the bladder or other malignancies. [34] Myeloproliferative neoplasms, including acute leukemia, non-Hodgkin lymphoma and multiple myeloma, occurred in 5 of 119 rheumatoid arthritis patients within the first decade after receiving cyclophosphamide, compared with one case of chronic lymphocytic leukemia in 119 rheumatoid arthritis patients with no history. [35] Secondary acute myeloid leukemia (therapy-related AML, or "t-AML") is thought to occur either by cyclophosphamide-inducing mutations or selecting for a high-risk myeloid clone. [36]

This risk may be dependent on dose and other factors, including the condition, other agents or treatment modalities (including radiotherapy), treatment length and intensity. For some regimens, it is rare. For instance, CMF-therapy for breast cancer (where the cumulative dose is typically less than 20 grams of cyclophosphamide) carries an AML risk of less than 1/2000, with some studies finding no increased risk compared to background. Other treatment regimens involving higher doses may carry risks of 1–2% or higher.

Cyclophosphamide-induced AML, when it happens, typically presents some years after treatment, with incidence peaking around 3–9 years. After nine years, the risk falls to background. When AML occurs, it is often preceded by a myelodysplastic syndrome phase, before developing into overt acute leukemia. Cyclophosphamide-induced leukemia will often involve complex cytogenetics, which carries a worse prognosis than de novo AML.[ citation needed ]

Pharmacology

Oral cyclophosphamide is rapidly absorbed and then converted by mixed-function oxidase enzymes (cytochrome P450 system) in the liver to active metabolites. [37] [38] The main active metabolite is 4-hydroxycyclophosphamide, which exists in equilibrium with its tautomer, aldophosphamide. Most of the aldophosphamide is then oxidised by the enzyme aldehyde dehydrogenase (ALDH) to make carboxycyclophosphamide. A small proportion of aldophosphamide freely diffuses into cells, where it is decomposed into two compounds, phosphoramide mustard and acrolein. [39] The active metabolites of cyclophosphamide are highly protein bound and distributed to all tissues, are assumed to cross the placenta and are known to be present in breast milk. [40]

It is specifically in the oxazaphosphorine group of medications. [41]

Cyclophosphamide metabolites are primarily excreted in the urine unchanged, and drug dosing should be appropriately adjusted in the setting of renal dysfunction. [42] Drugs altering hepatic microsomal enzyme activity (e.g., alcohol, barbiturates, rifampicin, or phenytoin) may result in accelerated metabolism of cyclophosphamide into its active metabolites, increasing both pharmacologic and toxic effects of the drug; alternatively, drugs that inhibit hepatic microsomal enzymes (e.g. corticosteroids, tricyclic antidepressants, or allopurinol) result in slower conversion of cyclophosphamide into its metabolites and consequently reduced therapeutic and toxic effects. [43]

Cyclophosphamide reduces plasma pseudocholinesterase activity and may result in prolonged neuromuscular blockade when administered concurrently with succinylcholine. [44] [45] Tricyclic antidepressants and other anticholinergic agents can result in delayed bladder emptying and prolonged bladder exposure to acrolein.[ citation needed ]

Mechanism of action

The main effect of cyclophosphamide is due to its metabolite phosphoramide mustard. This metabolite is only formed in cells that have low levels of ALDH. Phosphoramide mustard forms DNA crosslinks both between and within DNA strands at guanine N-7 positions (known as interstrand and intrastrand crosslinkages, respectively). This is irreversible and leads to cell apoptosis. [46]

Cyclophosphamide has relatively little typical chemotherapy toxicity as ALDHs are present in relatively large concentrations in bone marrow stem cells, liver and intestinal epithelium. ALDHs protect these actively proliferating tissues against toxic effects of phosphoramide mustard and acrolein by converting aldophosphamide to carboxycyclophosphamide that does not give rise to the toxic metabolites phosphoramide mustard and acrolein. This is because carboxycyclophosphamide cannot undergo β-elimination (the carboxylate acts as an electron-donating group, nullifying the potential for transformation), preventing nitrogen mustard activation and subsequent alkylation. [26] [47] [48]

Cyclophosphamide induces beneficial immunomodulatory effects in adaptive immunotherapy. Suggested mechanisms include: [49]

  1. Elimination of T regulatory cells (CD4+CD25+ T cells) in naive and tumor-bearing hosts
  2. Induction of T cell growth factors, such as type I IFNs, and/or
  3. Enhanced grafting of adoptively transferred, tumor-reactive effector T cells by the creation of an immunologic space niche.

Thus, cyclophosphamide preconditioning of recipient hosts (for donor T cells) has been used to enhance immunity in naïve hosts, and to enhance adoptive T cell immunotherapy regimens, as well as active vaccination strategies, inducing objective antitumor immunity.

History

As reported by O. M. Colvin in his study of the development of cyclophosphamide and its clinical applications,

Phosphoramide mustard, one of the principal toxic metabolites of cyclophosphamide, was synthesized and reported by Friedman and Seligman in 1954 [50] ...It was postulated that the presence of the phosphate bond to the nitrogen atom could inactivate the nitrogen mustard moiety, but the phosphate bond would be cleaved in gastric cancers and other tumors which had a high phosphamidase content. However, in studies carried out after the clinical efficacy of cyclophosphamide was demonstrated, phosphoramide mustard proved to be cytotoxic in vitro (footnote omitted), but to have a low therapeutic index in vivo. [51]

Cyclophosphamide and the related nitrogen mustard–derived alkylating agent ifosfamide were developed by Norbert Brock and ASTA (now Baxter Oncology). [52] Brock and his team synthesised and screened more than 1,000 candidate oxazaphosphorine compounds. [53] They converted the base nitrogen mustard into a nontoxic "transport form". This transport form was a prodrug, subsequently actively transported into cancer cells. Once in the cells, the prodrug was enzymatically converted into the active, toxic form. The first clinical trials were published at the end of the 1950s. [54] [55] [56] In 1959 it became the eighth cytotoxic anticancer agent to be approved by the FDA. [26]

Society and culture

The abbreviation CP is common, although abbreviating drug names is not best practice in medicine. [57]

Research

Because of its impact on the immune system, it is used in animal studies. Rodents are injected intraperitoneally with either a single dose of 150 mg/kg or two doses (150 and 100 mg/kg) spread over two days. [58] This can be used for applications such as:

Related Research Articles

<span class="mw-page-title-main">Chemotherapy</span> Treatment of cancer using drugs that inhibit cell division or kill cells

Chemotherapy is the type of cancer treatment that uses one or more anti-cancer drugs in a standard regimen. Chemotherapy may be given with a curative intent, or it may aim only to prolong life or to reduce symptoms. Chemotherapy is one of the major categories of the medical discipline specifically devoted to pharmacotherapy for cancer, which is called medical oncology.

<span class="mw-page-title-main">Leukemia</span> Blood cancers forming in the bone marrow

Leukemia is a group of blood cancers that usually begin in the bone marrow and produce high numbers of abnormal blood cells. These blood cells are not fully developed and are called blasts or leukemia cells. Symptoms may include bleeding and bruising, bone pain, fatigue, fever, and an increased risk of infections. These symptoms occur due to a lack of normal blood cells. Diagnosis is typically made by blood tests or bone marrow biopsy.

<span class="mw-page-title-main">Immunosuppressive drug</span> Drug that inhibits activity of immune system

Immunosuppressive drugs, also known as immunosuppressive agents, immunosuppressants and antirejection medications, are drugs that inhibit or prevent the activity of the immune system.

<span class="mw-page-title-main">Methotrexate</span> Chemotherapy and immunosuppressant medication

Methotrexate, formerly known as amethopterin, is a chemotherapy agent and immune-system suppressant. It is used to treat cancer, autoimmune diseases, and ectopic pregnancies. Types of cancers it is used for include breast cancer, leukemia, lung cancer, lymphoma, gestational trophoblastic disease, and osteosarcoma. Types of autoimmune diseases it is used for include psoriasis, rheumatoid arthritis, and Crohn's disease. It can be given by mouth or by injection.

<span class="mw-page-title-main">Azathioprine</span> Immunosuppressive medication

Azathioprine, sold under the brand name Imuran, among others, is an immunosuppressive medication. It is used for the treatment of rheumatoid arthritis, granulomatosis with polyangiitis, Crohn's disease, ulcerative colitis, and systemic lupus erythematosus; and in kidney transplants to prevent rejection. It is listed by the International Agency for Research on Cancer as a group 1 human carcinogen. It is taken by mouth or injected into a vein.

Bone marrow suppression also known as myelotoxicity or myelosuppression, is the decrease in production of cells responsible for providing immunity (leukocytes), carrying oxygen (erythrocytes), and/or those responsible for normal blood clotting (thrombocytes). Bone marrow suppression is a serious side effect of chemotherapy and certain drugs affecting the immune system such as azathioprine. The risk is especially high in cytotoxic chemotherapy for leukemia. In the case of non-small-cell lung cancer, myelosuppression predisposition was shown to be modulated by enhancer mutations.

<span class="mw-page-title-main">Hematopoietic stem cell transplantation</span> Medical procedure to replace blood or immune stem cells

Hematopoietic stem-cell transplantation (HSCT) is the transplantation of multipotent hematopoietic stem cells, usually derived from bone marrow, peripheral blood, or umbilical cord blood, in order to replicate inside a patient and produce additional normal blood cells. HSCT may be autologous, syngeneic, or allogeneic.

<span class="mw-page-title-main">Mesna</span> Chemical compound

Mesna, sold under the brand name Mesnex among others, is a medication used in those taking cyclophosphamide or ifosfamide to decrease the risk of bleeding from the bladder. It is used either by mouth or injection into a vein.

<span class="mw-page-title-main">Lupus nephritis</span> Inflammation of the kidneys

Lupus nephritis is an inflammation of the kidneys caused by systemic lupus erythematosus (SLE), an autoimmune disease. It is a type of glomerulonephritis in which the glomeruli become inflamed. Since it is a result of SLE, this type of glomerulonephritis is said to be secondary, and has a different pattern and outcome from conditions with a primary cause originating in the kidney. The diagnosis of lupus nephritis depends on blood tests, urinalysis, X-rays, ultrasound scans of the kidneys, and a kidney biopsy. On urinalysis, a nephritic picture is found and red blood cell casts, red blood cells and proteinuria is found.

<span class="mw-page-title-main">Mercaptopurine</span> Chemical compound

Mercaptopurine (6-MP), sold under the brand name Purinethol among others, is a medication used for cancer and autoimmune diseases. Specifically it is used to treat acute lymphocytic leukemia (ALL), acute promyelocytic leukemia (APL), Crohn's disease, and ulcerative colitis. For acute lymphocytic leukemia it is generally used with methotrexate. It is taken orally.

<span class="mw-page-title-main">History of cancer chemotherapy</span>

The era of cancer chemotherapy began in the 1940s with the first use of nitrogen mustards and folic acid antagonist drugs. The targeted therapy revolution has arrived, but many of the principles and limitations of chemotherapy discovered by the early researchers still apply.

<span class="mw-page-title-main">Epirubicin</span> Chemical compound

Epirubicin is an anthracycline drug used for chemotherapy. It can be used in combination with other medications to treat breast cancer in patients who have had surgery to remove the tumor. It is marketed by Pfizer under the trade name Ellence in the US and Pharmorubicin or Epirubicin Ebewe elsewhere.

Total body irradiation (TBI) is a form of radiotherapy used primarily as part of the preparative regimen for haematopoietic stem cell transplantation. As the name implies, TBI involves irradiation of the entire body, though in modern practice the lungs are often partially shielded to lower the risk of radiation-induced lung injury. Total body irradiation in the setting of bone marrow transplantation serves to destroy or suppress the recipient's immune system, preventing immunologic rejection of transplanted donor bone marrow or blood stem cells. Additionally, high doses of total body irradiation can eradicate residual cancer cells in the transplant recipient, increasing the likelihood that the transplant will be successful.

<span class="mw-page-title-main">Busulfan</span> Chemical compound

Busulfan is a chemotherapy drug in use since 1959. It is a cell cycle non-specific alkylating antineoplastic agent, in the class of alkyl sulfonates. Its chemical designation is 1,4-butanediol dimethanesulfonate.

<span class="mw-page-title-main">Tioguanine</span> Chemical compound

Tioguanine, also known as thioguanine or 6-thioguanine (6-TG) or tabloid is a medication used to treat acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), and chronic myeloid leukemia (CML). Long-term use is not recommended. It is given by mouth.

<span class="mw-page-title-main">Chlornaphazine</span> Chemical compound

Chlornaphazine, a derivative of 2-naphthylamine, is a nitrogen mustard that was developed in the 1950s for the treatment of polycythemia and Hodgkin's disease. However, a high incidence of bladder cancers in patients receiving treatment with chlornaphthazine led to use of the drug being discontinued.

<span class="mw-page-title-main">Perfosfamide</span> Chemical compound

Perfosfamide, or 4-hydroperoxycyclophosphamide was an experimental drug candidate for blood cancers that was rejected by the FDA in 1993 and never reached the market.

VAMP regimen or VAMP chemotherapy is a four-drug combination chemotherapy regimen, used today in the treatment of Hodgkin lymphoma. It was one of the earliest combination chemotherapy regimens, originally developed as a treatment for childhood leukemia by a group of researchers at the National Cancer Institute led by Emil Frei and Emil Freireich. The first clinical trial of VAMP began in 1961. Because it was the first time that four chemotherapeutic agents were used at once, the trial was highly controversial at its time. Although new combination chemotherapy regimens have replaced the use of VAMP in the treatment of childhood leukemia, VAMP is considered an important precursor to modern treatments, confirming the effectiveness of combination chemotherapy and leading to the use of combination chemotherapy regimens to treat other types of cancer.

High-dose chemotherapy and bone marrow transplant (HDC/BMT), also high-dose chemotherapy with autologous bone marrow transplant, was an ineffective treatment regimen for metastatic breast cancer, and later high-risk breast cancer, that was considered promising during the 1980s and 1990s. With an overall idea that more is better, this process involved taking cells from the person's bone marrow to store in a lab, then to give such high doses of chemotherapy drugs that the remaining bone marrow was destroyed, and then to inject the cells taken earlier back into the body as replacement. It was ultimately determined to be no more effective than normal treatment, and to have significantly higher side effects, including treatment-related death.

FLAG is a chemotherapy regimen used for relapsed and refractory acute myeloid leukemia (AML). The acronym incorporates the three primary ingredients of the regimen:

  1. Fludarabine: an antimetabolite that, while not active toward AML, increases formation of an active cytarabine metabolite, ara-CTP, in AML cells;
  2. Arabinofuranosyl cytidine : an antimetabolite that has been proven to be the most active toward AML among various cytotoxic drugs in single-drug trials; and
  3. Granulocyte colony-stimulating factor (G-CSF): a glycoprotein that shortens the duration and severity of neutropenia.

References

  1. "cyclophosphamide – definition of cyclophosphamide in English from the Oxford dictionary". OxfordDictionaries.com. Archived from the original on August 25, 2012. Retrieved 2016-01-20.
  2. "cyclophosphamide". Merriam-Webster.com Dictionary . Merriam-Webster.
  3. "NCI Drug Dictionary". National Cancer Institute. 2 February 2011. Archived from the original on 25 April 2015. Retrieved 20 December 2016.
  4. 1 2 3 4 5 6 7 8 9 10 "Cyclophosphamide". The American Society of Health-System Pharmacists. Archived from the original on 2 January 2017. Retrieved 8 December 2016.
  5. 1 2 Pagnoux C (September 2016). "Updates in ANCA-associated vasculitis". European Journal of Rheumatology. 3 (3): 122–133. doi:10.5152/eurjrheum.2015.0043. PMC   5058451 . PMID   27733943.
  6. World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl: 10665/325771 . WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
  7. 1 2 3 Brayfield, A, ed. (9 January 2017). "Cyclophosphamide: Martindale: The Complete Drug Reference". MedicinesComplete. London, UK: Pharmaceutical Press. Retrieved 12 August 2017.
  8. Brenner & Rector's The Kidney (11th ed.). Philadelphia: Elsevier. 2020. pp. 1007–1091. ISBN   978-0-323-53265-5.
  9. DeVrieze BW, Hurley JA (2019). "Goodpasture Syndrome (Anti-glomerular Basement Membrane Antibody Disease)". StatPearls. Treasure Island, USA: StatPearls Publishing. PMID   29083697.
  10. La Mantia L, Milanese C, Mascoli N, D'Amico R, Weinstock-Guttman B (January 2007). "Cyclophosphamide for multiple sclerosis". The Cochrane Database of Systematic Reviews. 2007 (1): CD002819. doi:10.1002/14651858.CD002819.pub2. PMC   8078225 . PMID   17253481.
  11. Davis LS, Reimold AM (April 2017). "Research and therapeutics-traditional and emerging therapies in systemic lupus erythematosus". Rheumatology. 56 (suppl_1): i100–i113. doi:10.1093/rheumatology/kew417. PMC   5850311 . PMID   28375452.
  12. Singh JA, Hossain A, Kotb A, Wells GA (September 2016). "Comparative effectiveness of immunosuppressive drugs and corticosteroids for lupus nephritis: a systematic review and network meta-analysis". Systematic Reviews. 5 (1): 155. doi: 10.1186/s13643-016-0328-z . PMC   5020478 . PMID   27619512.
  13. Gertz MA (December 2014). "Immunoglobulin light chain amyloidosis: 2014 update on diagnosis, prognosis, and treatment". American Journal of Hematology. 89 (12): 1132–40. doi:10.1002/ajh.23828. PMID   25407896. S2CID   85480421.
  14. Or-Geva N, Reisner Y (March 2016). "The evolution of T-cell depletion in haploidentical stem-cell transplantation". British Journal of Haematology. 172 (5): 667–84. doi: 10.1111/bjh.13868 . PMID   26684279. S2CID   1093277.
  15. Fuchs EJ (June 2015). "HLA-haploidentical blood or marrow transplantation with high-dose, post-transplantation cyclophosphamide". Bone Marrow Transplantation. 50 (Suppl 2): S31–6. doi:10.1038/bmt.2015.92. PMC   4634886 . PMID   26039204.
  16. Robinson TM, O'Donnell PV, Fuchs EJ, Luznik L (April 2016). "Haploidentical bone marrow and stem cell transplantation: experience with post-transplantation cyclophosphamide". Seminars in Hematology. 53 (2): 90–7. doi:10.1053/j.seminhematol.2016.01.005. PMC   4806368 . PMID   27000732.
  17. Enns GM, Roeder E, Chan RT, Ali-Khan Catts Z, Cox VA, Golabi M (September 1999). "Apparent cyclophosphamide (cytoxan) embryopathy: a distinct phenotype?". American Journal of Medical Genetics. 86 (3): 237–41. doi: 10.1002/(SICI)1096-8628(19990917)86:3<237::AID-AJMG8>3.0.CO;2-V . PMID   10482872.
  18. Singh G, Fries JF, Williams CA, Zatarain E, Spitz P, Bloch DA (February 1991). "Toxicity profiles of disease modifying antirheumatic drugs in rheumatoid arthritis". The Journal of Rheumatology. 18 (2): 188–94. PMID   1673721.
  19. Lohrmann HP (1984). "The problem of permanent bone marrow damage after cytotoxic drug treatment". Oncology. 41 (3): 180–4. doi:10.1159/000225819. PMID   6374556.
  20. Singh JA, Hossain A, Kotb A, Wells G (September 2016). "Risk of serious infections with immunosuppressive drugs and glucocorticoids for lupus nephritis: a systematic review and network meta-analysis". BMC Medicine. 14 (1): 137. doi: 10.1186/s12916-016-0673-8 . PMC   5022202 . PMID   27623861.
  21. Twohig KJ, Matthay RA (March 1990). "Pulmonary effects of cytotoxic agents other than bleomycin". Clinics in Chest Medicine. 11 (1): 31–54. doi:10.1016/S0272-5231(21)00670-5. PMID   1691069.
  22. Malik SW, Myers JL, DeRemee RA, Specks U (December 1996). "Lung toxicity associated with cyclophosphamide use. Two distinct patterns". American Journal of Respiratory and Critical Care Medicine. 154 (6 Pt 1): 1851–6. doi:10.1164/ajrccm.154.6.8970380. PMID   8970380.
  23. Floyd JD, Nguyen DT, Lobins RL, Bashir Q, Doll DC, Perry MC (October 2005). "Cardiotoxicity of cancer therapy". Journal of Clinical Oncology. 23 (30): 7685–96. doi:10.1200/JCO.2005.08.789. PMID   16234530.
  24. Bressler RB, Huston DP (March 1985). "Water intoxication following moderate-dose intravenous cyclophosphamide". Archives of Internal Medicine. 145 (3): 548–9. doi:10.1001/archinte.145.3.548. PMID   3977522.
  25. Salido M, Macarron P, Hernández-García C, D'Cruz DP, Khamashta MA, Hughes GR (2003). "Water intoxication induced by low-dose cyclophosphamide in two patients with systemic lupus erythematosus". Lupus. 12 (8): 636–9. doi:10.1191/0961203303lu421cr. PMID   12945725. S2CID   26125211.
  26. 1 2 3 Emadi A, Jones RJ, Brodsky RA (November 2009). "Cyclophosphamide and cancer: golden anniversary". Nature Reviews. Clinical Oncology. 6 (11): 638–47. doi:10.1038/nrclinonc.2009.146. PMID   19786984. S2CID   18219134.
  27. Monach PA, Arnold LM, Merkel PA (January 2010). "Incidence and prevention of bladder toxicity from cyclophosphamide in the treatment of rheumatic diseases: a data-driven review". Arthritis and Rheumatism. 62 (1): 9–21. doi:10.1002/art.25061. PMID   20039416.
  28. Boumpas DT, Austin HA, Vaughn EM, Klippel JH, Steinberg AD, Yarboro CH, Balow JE (September 1992). "Controlled trial of pulse methylprednisolone versus two regimens of pulse cyclophosphamide in severe lupus nephritis". Lancet. 340 (8822): 741–5. doi:10.1016/0140-6736(92)92292-n. PMID   1356175. S2CID   8800101.
  29. Pryor BD, Bologna SG, Kahl LE (September 1996). "Risk factors for serious infection during treatment with cyclophosphamide and high-dose corticosteroids for systemic lupus erythematosus". Arthritis and Rheumatism. 39 (9): 1475–82. doi:10.1002/art.1780390906. PMID   8814058.
  30. Suryaprasad A, Stone JH (July 2008). "When is it safe to stop Pneumocystis jiroveci pneumonia prophylaxis? Insights from three cases complicating autoimmune diseases". Arthritis and Rheumatism. 59 (7): 1034–9. doi:10.1002/art.23822. PMID   18576286.
  31. Kronbichler A, Jayne DR, Mayer G (March 2015). "Frequency, risk factors and prophylaxis of infection in ANCA-associated vasculitis". European Journal of Clinical Investigation (Review). 45 (3): 346–68. doi: 10.1111/eci.12410 . PMID   25627555. S2CID   870510.
  32. Balow JE, Austin HA, Tsokos GC, Antonovych TT, Steinberg AD, Klippel JH (January 1987). "NIH conference. Lupus nephritis". Annals of Internal Medicine. 106 (1): 79–94. doi:10.7326/0003-4819-106-1-79. PMID   3789582.
  33. Periti P, Mazzei T, Mini E (2002). "Clinical pharmacokinetics of depot leuprorelin". Clinical Pharmacokinetics. 41 (7): 485–504. doi:10.2165/00003088-200241070-00003. PMID   12083977. S2CID   10873321.
  34. Bernatsky S, Clarke AE, Suissa S (February 2008). "Hematologic malignant neoplasms after drug exposure in rheumatoid arthritis". Archives of Internal Medicine. 168 (4): 378–81. doi: 10.1001/archinternmed.2007.107 . PMID   18299492.
  35. Radis CD, Kahl LE, Baker GL, Wasko MC, Cash JM, Gallatin A, Stolzer BL, Agarwal AK, Medsger TA, Kwoh CK (August 1995). "Effects of cyclophosphamide on the development of malignancy and on long-term survival of patients with rheumatoid arthritis. A 20-year followup study". Arthritis and Rheumatism. 38 (8): 1120–7. doi:10.1002/art.1780380815. PMID   7639809.
  36. Larson RA (2007). "Etiology and management of therapy-related myeloid leukemia". Hematology. American Society of Hematology. Education Program. 2007: 453–9. doi: 10.1182/asheducation-2007.1.453 . PMID   18024664.
  37. Cohen JL, Jao JY (August 1970). "Enzymatic basis of cyclophosphamide activation by hepatic microsomes of the rat". The Journal of Pharmacology and Experimental Therapeutics. 174 (2): 206–10. PMID   4393764. Archived from the original on 2021-08-28. Retrieved 2014-05-02.
  38. Huttunen KM, Raunio H, Rautio J (September 2011). "Prodrugs--from serendipity to rational design". Pharmacological Reviews. 63 (3): 750–71. doi:10.1124/pr.110.003459. PMID   21737530. S2CID   25381232.
  39. Boddy AV, Yule SM (April 2000). "Metabolism and pharmacokinetics of oxazaphosphorines". Clinical Pharmacokinetics. 38 (4): 291–304. doi:10.2165/00003088-200038040-00001. PMID   10803453. S2CID   39787288.
  40. Wiernik PH, Duncan JH (May 1971). "Cyclophosphamide in human milk". Lancet. 1 (7705): 912. doi:10.1016/s0140-6736(71)92474-3. PMID   4102054.
  41. Giraud B, Hebert G, Deroussent A, Veal GJ, Vassal G, Paci A (August 2010). "Oxazaphosphorines: new therapeutic strategies for an old class of drugs". Expert Opinion on Drug Metabolism & Toxicology. 6 (8): 919–938. doi:10.1517/17425255.2010.487861. PMID   20446865. S2CID   695545.
  42. Haubitz M, Bohnenstengel F, Brunkhorst R, Schwab M, Hofmann U, Busse D (April 2002). "Cyclophosphamide pharmacokinetics and dose requirements in patients with renal insufficiency". Kidney International. 61 (4): 1495–501. doi: 10.1046/j.1523-1755.2002.00279.x . PMID   11918757.
  43. Donelli MG, Bartosek I, Guaitani A, Martini A, Colombo T, Pacciarini MA, Modica R (April 1976). "Importance of pharmacokinetic studies on cyclophosphamide (NSC-26271) in understanding its cytotoxic effect". Cancer Treatment Reports. 60 (4): 395–401. PMID   1277213.
  44. Koseoglu V, Chiang J, Chan KW (December 1999). "Acquired pseudocholinesterase deficiency after high-dose cyclophosphamide". Bone Marrow Transplantation. 24 (12): 1367–8. doi:10.1038/sj.bmt.1702097. PMID   10627651. S2CID   22946564.
  45. Vigouroux D, Voltaire L (1995). "[Prolonged neuromuscular block induced by mivacurium in a patient treated with cyclophosphamide]" [Prolonged neuromuscular block induced by mivacurium in a patient treated with cyclophosphamide]. Annales Françaises d'Anesthésie et de Réanimation (in French). 14 (6): 508–10. doi:10.1016/S0750-7658(05)80493-9. PMID   8745976. INIST   2947795.
  46. Hall AG, Tilby MJ (September 1992). "Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies". Blood Reviews. 6 (3): 163–73. doi:10.1016/0268-960X(92)90028-O. PMID   1422285.
  47. Kohn FR, Sladek NE (October 1985). "Aldehyde dehydrogenase activity as the basis for the relative insensitivity of murine pluripotent hematopoietic stem cells to oxazaphosphorines". Biochemical Pharmacology. 34 (19): 3465–71. doi:10.1016/0006-2952(85)90719-1. PMID   2996550.
  48. Friedman OM, Wodinsky I, Myles A (April 1976). "Cyclophosphamide (NSC-26271)-related phosphoramide mustards- recent advances and historical perspective". Cancer Treatment Reports. 60 (4): 337–46. PMID   1277209.
  49. Sistigu A, Viaud S, Chaput N, Bracci L, Proietti E, Zitvogel L (July 2011). "Immunomodulatory effects of cyclophosphamide and implementations for vaccine design". Seminars in Immunopathology. 33 (4): 369–83. doi:10.1007/s00281-011-0245-0. PMID   21611872. S2CID   3360104.
  50. Friedman OM, Seligman AM (1954). "Preparation of N-Phosphorylated Derivatives of Bis-β-chloroethylamine1a". Journal of the American Chemical Society. 76 (3): 655–8. doi:10.1021/ja01632a006.
  51. Colvin OM (August 1999). "An overview of cyclophosphamide development and clinical applications". Current Pharmaceutical Design. 5 (8): 555–60. doi:10.2174/1381612805666230110214512. PMID   10469891.
  52. U.S. patent 3,018,302
  53. Brock N (August 1996). "The history of the oxazaphosphorine cytostatics". Cancer. 78 (3): 542–7. doi: 10.1002/(SICI)1097-0142(19960801)78:3<542::AID-CNCR23>3.0.CO;2-Y . PMID   8697402.
  54. Wilmanns H (1958). Chemotherapie maligner Tumoren[Chemotherapy of malignant tumors]. Asta-Forschung und Therapie (in German). OCLC   73296245.[ page needed ]
  55. Gross R, Wulf G (1959). "Klinische und experimentelle Erfahrungen mit zyk lischen und nichtzyklischen Phosphamidestern des N-Losl in der Chemotherapie von Tumoren" [Clinical and experimental experiences with metallic cyclical and non-cyclical Phosphamidestern the N-losl in the chemotherapy of tumors]. Strahlentherapie (in German). 41: 361–7.
  56. Brock N (January 1989). "Oxazaphosphorine cytostatics: past-present-future. Seventh Cain Memorial Award lecture". Cancer Research. 49 (1): 1–7. PMID   2491747.
  57. Institute for Safe Medication Practices, ISMP's List of Error-Prone Abbreviations, Symbols, and Dose Designations (PDF), archived (PDF) from the original on 2011-10-27.
  58. Zuluaga AF, Salazar BE, Rodriguez CA, Zapata AX, Agudelo M, Vesga O (March 2006). "Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases". BMC Infectious Diseases. 6 (1): 55. doi: 10.1186/1471-2334-6-55 . PMC   1434751 . PMID   16545113.
  59. "EPA: Notifications, FY 1998 to Present - Biotechnology Program under the Toxic Substances Control Act (TSCA) | New Chemicals Program | US EPA". Archived from the original on 2015-06-21. Retrieved 2015-07-01.
  60. Huyan XH, Lin YP, Gao T, Chen RY, Fan YM (September 2011). "Immunosuppressive effect of cyclophosphamide on white blood cells and lymphocyte subpopulations from peripheral blood of Balb/c mice". International Immunopharmacology. 11 (9): 1293–7. doi:10.1016/j.intimp.2011.04.011. PMID   21530682.