Anthraquinone

Last updated
9,10-Anthraquinone [1]
Anthraquinone acsv.svg
Anthraquinone molecule ball from xtal.png
Anthraquinone powder.jpg
Names
Preferred IUPAC name
Anthracene-9,10-dione [2]
Other names
  • Anthraquinone
  • 9,10-Anthracenedione
  • Anthradione
  • 9,10-Anthrachinon
  • Anthracene-9,10-quinone
  • 9,10-Dihydro-9,10-dioxoanthracene
  • Hoelite
  • Morkit
  • Corbit
Identifiers
3D model (JSmol)
390030
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.001.408 OOjs UI icon edit-ltr-progressive.svg
102870
KEGG
PubChem CID
RTECS number
  • CB4725000
UNII
UN number 3143
  • InChI=1S/C14H8O2/c15-13-9-5-1-2-6-10(9)14(16)12-8-4-3-7-11(12)13/h1-8H
    Key: RZVHIXYEVGDQDX-UHFFFAOYSA-N
  • O=C1c2ccccc2C(=O)c3ccccc13
Properties
C14H8O2
Molar mass 208.216 g·mol−1
AppearanceYellow solid
Density 1.438 g/cm3 [1]
Melting point 284.8 °C (544.6 °F; 558.0 K) [1]
Boiling point 377 °C (711 °F; 650 K) [1]
Insoluble
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
possible carcinogen
GHS labelling:
GHS-pictogram-silhouette.svg
Danger
H350
P201, P202, P281, P308+P313, P405, P501
Flash point 185 °C (365 °F; 458 K)
Related compounds
Related compounds
quinone,
anthracene
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Anthraquinone, also called anthracenedione or dioxoanthracene, is an aromatic organic compound with formula C
14
H
8
O
2
. Isomers include various quinone derivatives. The term anthraquinone however refers to the isomer, 9,10-anthraquinone (IUPAC: 9,10-dioxoanthracene) wherein the keto groups are located on the central ring. It is a building block of many dyes and is used in bleaching pulp for papermaking. It is a yellow, highly crystalline solid, poorly soluble in water but soluble in hot organic solvents. It is almost completely insoluble in ethanol near room temperature but 2.25 g will dissolve in 100 g of boiling ethanol. It is found in nature as the rare mineral hoelite.

Contents

Synthesis

There are several current industrial methods to produce 9,10-anthraquinone:

  1. The oxidation of anthracene. Chromium(VI) is the typical oxidant.
  2. The Friedel-Crafts reaction of benzene and phthalic anhydride in presence of AlCl3. o-Benzoylbenzoic acid is an intermediate. This reaction is useful for producing substituted anthraquinones.
  3. The Diels-Alder reaction of naphthoquinone and butadiene followed by oxidative dehydrogenation.
  4. The acid-catalyzed dimerization of styrene to give a 1,3-diphenylbutene, which then can be transformed to the anthraquinone. [3] This process was pioneered by BASF.

It also arises via the Rickert–Alder reaction, a retro-Diels–Alder reaction.

Reactions

Hydrogenation gives dihydroanthraquinone (anthrahydroquinone). Reduction with copper gives anthrone. [4] Sulfonation with sulfuric acid gives anthroquinone-1-sulfonic acid, [5] which reacts with sodium chlorate to give 1-chloroanthaquinone. [6]

Applications

Digester additive in papermaking

9,10-Anthraquinone is used as a digester additive in production of paper pulp by alkaline processes, like the kraft, the alkaline sulfite or the Soda-AQ processes. The anthraquinone is a redox catalyst. The reaction mechanism may involve single electron transfer (SET). [7] The anthraquinone oxidizes the reducing end of polysaccharides in the pulp, i.e., cellulose and hemicellulose, and thereby protecting it from alkaline degradation (peeling). The anthraquinone is reduced to 9,10-dihydroxyanthracene which then can react with lignin. The lignin is degraded and becomes more watersoluble and thereby more easy to wash away from the pulp, while the anthraquinone is regenerated. This process gives an increase in yield of pulp, typically 1–3% and a reduction in kappa number. [8]

Use in flow batteries

9,10-Anthraquinone is used as an electrolyte in flow battery which can provide long term electrical storage.

Niche uses

9,10-anthraquinone is used as a bird repellant on seeds, and as a gas generator in satellite balloons. [9] It has also been mixed with lanolin and used as a wool spray to protect sheep flocks against kea attacks in New Zealand. [10]

Other isomers

Several other isomers of anthraquinone are possible, including the 1,2-, 1,4-, and 2,6-anthraquinones. They are of comparatively minor importance. The term is also used in the more general sense of any compound that can be viewed as an anthraquinone with some hydrogen atoms replaced by other atoms or functional groups. These derivatives include substances that are technically useful or play important roles in living beings.

Recently, a class of anthraquinone derivates were shown to have self-healing properties when doped in PMMA matrix. [11]

Safety

Anthraquinone has no recorded LD50, probably because it is so insoluble in water.

In terms of metabolism of substituted anthraquinones, the enzyme encoded by the gene UGT1A8 has glucuronidase activity with many substrates including anthraquinones. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Alkyne</span> Hydrocarbon compound containing one or more C≡C bonds

In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula CnH2n−2. Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to C2H2, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic.

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Anthracene</span> Chemical compound

Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the production of the red dye alizarin and other dyes. Anthracene is colorless but exhibits a blue (400–500 nm peak) fluorescence under ultraviolet radiation.

The quinones are a class of organic compounds that are formally "derived from aromatic compounds [such as benzene or naphthalene] by conversion of an even number of –CH= groups into –C(=O)– groups with any necessary rearrangement of double bonds, resulting in "a fully conjugated cyclic dione structure". The archetypical member of the class is 1,4-benzoquinone or cyclohexadienedione, often called simply "quinone". Other important examples are 1,2-benzoquinone (ortho-quinone), 1,4-naphthoquinone and 9,10-anthraquinone.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

Furan is a heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as furans.

<span class="mw-page-title-main">Acyl halide</span> Oxoacid compound with an –OH group replaced by a halogen

In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

<span class="mw-page-title-main">Aluminium chloride</span> Chemical compound

Aluminium chloride, also known as aluminium trichloride, is an inorganic compound with the formula AlCl3. It forms a hexahydrate with the formula [Al(H2O)6]Cl3, containing six water molecules of hydration. Both the anhydrous form and the hexahydrate are colourless crystals, but samples are often contaminated with iron(III) chloride, giving them a yellow colour.

<span class="mw-page-title-main">Amidine</span> Organic compounds

Amidines are organic compounds with the functional group RC(NR)NR2, where the R groups can be the same or different. They are the imine derivatives of amides (RC(O)NR2). The simplest amidine is formamidine, HC(=NH)NH2.

<span class="mw-page-title-main">Cyclooctatetraene</span> Chemical compound

1,3,5,7-Cyclooctatetraene (COT) is an unsaturated derivative of cyclooctane, with the formula C8H8. It is also known as [8]annulene. This polyunsaturated hydrocarbon is a colorless to light yellow flammable liquid at room temperature. Because of its stoichiometric relationship to benzene, COT has been the subject of much research and some controversy.

<span class="mw-page-title-main">Iminium</span> Polyatomic ion of the form >C=N< and charge +1

In organic chemistry, an iminium cation is a polyatomic ion with the general structure [R1R2C=NR3R4]+. They are common in synthetic chemistry and biology.

1,3,5-Triazine, also called s-triazine, is an organic chemical compound with the formula (HCN)3. It is a six-membered heterocyclic aromatic ring, one of several isomeric triazines. S-triazine—the "symmetric" isomer—and its derivatives are useful in a variety of applications.

<i>o</i>-Phenylenediamine Chemical compound

o-Phenylenediamine (OPD) is an organic compound with the formula C6H4(NH2)2. This aromatic diamine is an important precursor to many heterocyclic compounds. OPD is a white compound although samples appear darker owing to oxidation by air. It is isomeric with m-phenylenediamine and p-phenylenediamine.

<span class="mw-page-title-main">Diethylamine</span> Chemical compound

Diethylamine is an organic compound with the formula (CH3CH2)2NH. It is a secondary amine. It is a flammable, weakly alkaline liquid that is miscible with most solvents. It is a colorless liquid, but commercial samples often appear brown due to impurities. It has a strong ammonia-like odor.

<span class="mw-page-title-main">Sulfolene</span> Chemical compound

Sulfolene, or butadiene sulfone is a cyclic organic chemical with a sulfone functional group. It is a white, odorless, crystalline, indefinitely storable solid, which dissolves in water and many organic solvents. The compound is used as a source of butadiene.

<span class="mw-page-title-main">Benzyl cyanide</span> Chemical compound

Benzyl cyanide (abbreviated BnCN) is an organic compound with the chemical formula C6H5CH2CN. This colorless oily aromatic liquid is an important precursor to numerous compounds in organic chemistry. It is also an important pheromone in certain species.

<span class="mw-page-title-main">2-Naphthol</span> Chemical compound

2-Naphthol, or β-naphthol, is a fluorescent colorless (or occasionally yellow) crystalline solid with the formula C10H7OH. It is an isomer of 1-naphthol, differing by the location of the hydroxyl group on the naphthalene ring. The naphthols are naphthalene homologues of phenol, but more reactive. Both isomers are soluble in simple alcohols, ethers, and chloroform. 2-Naphthol is a widely used intermediate for the production of dyes and other compounds.

1-Naphthol, or α-naphthol, is a organic compound with the formula C10H7OH. It is a fluorescent white solid. 1-Naphthol differs from its isomer 2-naphthol by the location of the hydroxyl group on the naphthalene ring. The naphthols are naphthalene homologues of phenol. Both isomers are soluble in simple organic solvents. They are precursors to a variety of useful compounds.

<span class="mw-page-title-main">1,4-Naphthoquinone</span> Chemical compound

1,4-Naphthoquinone or para-naphthoquinone is a quinone derived from naphthalene. It forms volatile yellow triclinic crystals and has a sharp odor similar to benzoquinone. It is almost insoluble in cold water, slightly soluble in petroleum ether, and more soluble in polar organic solvents. In alkaline solutions it produces a reddish-brown color. Vitamin K is a derivative of 1,4-naphthoquinone. It is a planar molecule with one aromatic ring fused to a quinone subunit. It is an isomer of 1,2-naphthoquinone.

<span class="mw-page-title-main">1,3-Diphenylisobenzofuran</span> Chemical compound

1,3-Diphenylisobenzofuran is a highly reactive diene that can scavenge unstable and short-lived dienophiles in a Diels-Alder reaction. It is furthermore used as a standard reagent for the determination of singlet oxygen, even in biological systems. Cycloadditions with 1,3-diphenylisobenzofuran and subsequent oxygen cleavage provide access to a variety of polyaromatics.

References

  1. 1 2 3 4 Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. p. 3.28. ISBN   9781498754293.
  2. International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 724. doi:10.1039/9781849733069. ISBN   978-0-85404-182-4.
  3. Vogel, A. "Anthraquinone". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_347. ISBN   978-3527306732.
  4. Macleod, L. C.; Allen, C. F. H. (1934). "Benzanthrone". Organic Syntheses. 14: 4. doi:10.15227/orgsyn.014.0004.
  5. Scott, W. J.; Allen, C. F. H. (1938). "Potassium Anthraquinone-α-Sulfonate". Organic Syntheses. 18: 72. doi:10.15227/orgsyn.018.0072.
  6. Scott, W. J.; Allen, C. F. H. (1938). "α-Chloroanthraquinone". Organic Syntheses. 18: 15. doi:10.15227/orgsyn.018.0015.
  7. Samp, J. C. (2008). A comprehensive mechanism for anthraquinone mass transfer in alkaline pulping (Thesis). Georgia Institute of Technology. p. 30. hdl:1853/24767.
  8. Sturgeoff, L. G.; Pitl, Y. (1997) [1993]. "Low Kappa Pulping without Capital Investment". In Goyal, G. C. (ed.). Anthraquinone Pulping. TAPPI Press. pp. 3–9. ISBN   0-89852-340-0.
  9. "www.americanheritage.com". Archived from the original on 2009-06-09. Retrieved 2009-09-22.
  10. Dudding, Adam (29 July 2012). "How to solve a problem like a kea". Sunday Star Times. New Zealand. Retrieved 11 November 2014.
  11. Ramini, Shiva K.; Kuzyk, Mark G. (2012-08-07). "A self healing model based on polymer-mediated chromophore correlations". The Journal of Chemical Physics. 137 (5): 054705. arXiv: 1205.0481 . Bibcode:2012JChPh.137e4705R. doi:10.1063/1.4739295. ISSN   0021-9606. PMID   22894369. S2CID   5512565.
  12. Ritter, J. K.; Chen, F.; Sheen, Y. Y.; Tran, H. M.; Kimura, S.; Yeatman, M. T.; Owens, I. S. (1992). "A Novel Complex Locus UGT1 Encodes Human Bilirubin, Phenol, and other UDP-Glucuronosyltransferase Isozymes with Identical Carboxyl Termini" (PDF). Journal of Biological Chemistry. 267 (5): 3257–3261. doi: 10.1016/S0021-9258(19)50724-4 . PMID   1339448.