Sarett oxidation | |
---|---|
Named after | Lewis Hastings Sarett |
Reaction type | Organic redox reaction |
Identifiers | |
RSC ontology ID | RXNO:0000547 |
The Sarett oxidation is an organic reaction that oxidizes primary and secondary alcohols to aldehydes and ketones, respectively, using chromium trioxide and pyridine. Unlike the similar Jones oxidation, the Sarett oxidation will not further oxidize primary alcohols to their carboxylic acid form, neither will it affect carbon-carbon double bonds. [1] Use of the original Sarett oxidation has become largely antiquated however, in favor of other modified oxidation techniques. The unadulterated reaction is still occasionally used in teaching settings and in small scale laboratory research. [2]
The reaction is named after the American chemist Lewis Hastings Sarett (1917–1999). The first description of its use appears in a 1953 article [3] co-authored by Sarett that relates to the synthesis of adrenal steroids. The paper proposes the use of the pyridine chromium complex CrO3-2C5H5N to oxidize primary and secondary alcohols. The complex would later become known as the "Sarett Reagent".
Although the Sarett reagent gives good yields of ketones, its conversion of primary alcohols is less efficient. Furthermore, the isolation of products from the reaction solution can be difficult. [4] These limitations were partially addressed with the introduction of the Collins oxidation. [4] The active ingredient in both the Sarett reagent is identical to that in the so-called "Collins reagent", i.e. the pyridine complex (CrO3(C5H5N)2. The Collins oxidation varies from the Sarett oxidation only in that it uses methylene chloride as solvent instead of neat pyridine. [4] The initially proposed methods of executing the Collins and Sarett oxidations were still not ideal however, as the Sarett reagent's hygroscopic, and pyrophoric properties make it difficult to prepare. [5] This issues lead to an improvement of the Collins oxidation protocol known as the Ratcliffe variant. [5] [6]
The Sarett reagent was originally prepared in 1953 by addition of chromium trioxide to pyridine. [3] The pyridine must be cooled because the reaction is dangerously exothermic. Slowly, the brick-red CrO3 transform into the bis(pyridine) adduct. Subsequent to the conversion to the Sarett reagent, it is immediately used. [3]
The specific methods of the reagent's preparation are critical, as improper technique can cause the explosion of the materials. [6] Some technical improvements to the original methodology have reduced the risks associated with preparation. One such recent improvement reduced the likelihood of explosion by using chromic anhydride granules that would immediately sink below the surface of the cooled pyridine upon addition. [2] It should also be mentioned that chromium trioxide is a corrosive carcinogen and therefore must be handled with extreme care. [7]
The original Collins oxidation calls for the Sarett reagent to be removed from the excess pyridine and dissolved in the less basic methylene chloride. [4] [6] While the new solvent improves the overall yield of the reaction, it also requires the dangerous transfer of the pyrophoric reagent. The 1970 Ratcliffe variation reduced the risk of explosion by calling for the Sarett reagent to be made in situ. This was achieved by creating the Sarett reagent according to the original protocol using a stirred mixture of pyridine and methylene chloride. [5]
The Sarett oxidation efficiently oxidizes primary alcohols to aldehydes without further oxidizing them to carboxylic acids. [6] This key difference from the Jones oxidation is due to the fact that the Jones oxidation occurs in the presence of water, which adds to the alcohol following oxidation to an aldehyde. [6] [8] The Sarett and Collins oxidations occur in the absence of water. [6] The Sarett oxidation also proceeds under basic conditions, which allows for the use of acid sensitive substrates, such as those containing certain protecting groups. This is dissimilar to other common acidic oxidation reactions such as the Baeyer-Villiger oxidation, which would remove or alter such groups. Additionally, the Sarett reagent is relatively inert towards double bonds and thioether groups. [3] These groups cannot effectively interact with the chromium of the Sarett reagent, as compared to the chromium in oxidizing complexes used prior to 1953. [3]
In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.
In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.
In organic chemistry, the Swern oxidation, named after Daniel Swern, is a chemical reaction whereby a primary or secondary alcohol is oxidized to an aldehyde or ketone using oxalyl chloride, dimethyl sulfoxide (DMSO) and an organic base, such as triethylamine. It is one of the many oxidation reactions commonly referred to as 'activated DMSO' oxidations. The reaction is known for its mild character and wide tolerance of functional groups.
Chromic acid is an inorganic acid composed of the elements chromium, oxygen, and hydrogen. It is a dark, purplish red, odorless, sand-like solid powder. When dissolved in water, it is a strong acid. There are 2 types of chromic acid: molecular chromic acid with the formula H
2CrO
4 and dichromic acid with the formula H
2Cr
2O
7.
Potassium dichromate, K2Cr2O7, is a common inorganic chemical reagent, most commonly used as an oxidizing agent in various laboratory and industrial applications. As with all hexavalent chromium compounds, it is acutely and chronically harmful to health. It is a crystalline ionic solid with a very bright, red-orange color. The salt is popular in laboratories because it is not deliquescent, in contrast to the more industrially relevant salt sodium dichromate.
Pyridinium chlorochromate (PCC) is a yellow-orange salt with the formula [C5H5NH]+[CrO3Cl]−. It is a reagent in organic synthesis used primarily for oxidation of alcohols to form carbonyls. A variety of related compounds are known with similar reactivity. PCC offers the advantage of the selective oxidation of alcohols to aldehydes or ketones, whereas many other reagents are less selective.
Chromium trioxide (also known as chromium(VI) oxide or chromic anhydride) is an inorganic compound with the formula CrO3. It is the acidic anhydride of chromic acid, and is sometimes marketed under the same name. This compound is a dark-purple solid under anhydrous conditions and bright orange when wet. The substance dissolves in water concomitant with hydrolysis. Millions of kilograms are produced annually, mainly for electroplating. Chromium trioxide is a powerful oxidiser, a mutagen, and a carcinogen.
The Nicolaou Taxol total synthesis, published by K. C. Nicolaou and his group in 1994 concerns the total synthesis of taxol. Taxol is an important drug in the treatment of cancer but also expensive because the compound is harvested from a scarce resource, namely the pacific yew.
Chromyl chloride is an inorganic compound with the formula CrO2Cl2. It is a reddish brown compound that is a volatile liquid at room temperature, which is unusual for transition metal compounds.
The Étard reaction is a chemical reaction that involves the direct oxidation of an aromatic or heterocyclic bound methyl group to an aldehyde using chromyl chloride. For example, toluene can be oxidized to benzaldehyde.
Wender Taxol total synthesis in organic chemistry describes a Taxol total synthesis by the group of Paul Wender at Stanford University published in 1997. This synthesis has much in common with the Holton Taxol total synthesis in that it is a linear synthesis starting from a naturally occurring compound with ring construction in the order A,B,C,D. The Wender effort is shorter by approximately 10 steps.
Collins reagent is the complex of chromium(VI) oxide with pyridine in dichloromethane. This metal-pyridine complex, a red solid, is used to oxidize primary alcohols to the corresponding aldehydes and secondary alcohols to the corresponding ketones. This complex is a hygroscopic orange solid.
The pyridinium dichromate(PDC) or Cornforth reagent is a pyridinium salt of dichromate with the chemical formula [C5H5NH]2[Cr2O7]. This compound is named after the Australian-British chemist Sir John Warcup Cornforth (b. 1917) who introduced it in 1962. The Cornforth reagent is a strong oxidizing agent which can convert primary and secondary alcohols to aldehydes and ketones respectively. In its chemical structure and functions it is closely related to other compounds made from hexavalent chromium oxide, such as pyridinium chlorochromate and Collins reagent. Because of their toxicity, these reagents are rarely used nowadays.
In organic chemistry, a homologation reaction, also known as homologization, is any chemical reaction that converts the reactant into the next member of the homologous series. A homologous series is a group of compounds that differ by a constant unit, generally a methylene group. The reactants undergo a homologation when the number of a repeated structural unit in the molecules is increased. The most common homologation reactions increase the number of methylene units in saturated chain within the molecule. For example, the reaction of aldehydes or ketones with diazomethane or methoxymethylenetriphenylphosphine to give the next homologue in the series.
The Dess–Martin oxidation is an organic reaction for the oxidation of primary alcohols to aldehydes and secondary alcohols to ketones using Dess–Martin periodinane. It is named after the American chemists Daniel Benjamin Dess and James Cullen Martin who developed the periodinane reagent in 1983.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters where the carbon carries a higher oxidation state. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids.
Oxidation with chromium(VI) complexes involves the conversion of alcohols to carbonyl compounds or more highly oxidized products through the action of molecular chromium(VI) oxides and salts. The principal reagents are Collins reagent, PDC, and PCC. These reagents represent improvements over inorganic chromium(VI) reagents such as Jones reagent.
The Jones oxidation is an organic reaction for the oxidation of primary and secondary alcohols to carboxylic acids and ketones, respectively. It is named after its discoverer, Sir Ewart Jones. The reaction was an early method for the oxidation of alcohols. Its use has subsided because milder, more selective reagents have been developed, e.g. Collins reagent.
Chromyl fluoride is an inorganic compound with the formula CrO2F2. It is a violet-red colored crystalline solid that melts to an orange-red liquid.
The Collins oxidation is an organic reaction for the oxidation of primary alcohols to aldehydes. It is distinguished from other chromium oxide-based oxidations by the use of Collins reagent, a complex of chromium(VI) oxide with pyridine in dichloromethane.