The Boudouard reaction, named after Octave Leopold Boudouard, is the redox reaction of a chemical equilibrium mixture of carbon monoxide and carbon dioxide at a given temperature. It is the disproportionation of carbon monoxide into carbon dioxide and graphite or its reverse: [1]
The Boudouard reaction to form carbon dioxide and carbon is exothermic at all temperatures. However, the standard enthalpy of the Boudouard reaction becomes less negative with increasing temperature, [2] as shown to the side.
While the formation enthalpy of CO
2 is higher than that of CO, the formation entropy is much lower. Consequently, the standard free energy of formation of CO
2 from its component elements is almost constant and independent of the temperature, while the free energy of formation of CO decreases with temperature. [3] At high temperatures, the forward reaction becomes endergonic, favoring the (exergonic) reverse reaction toward CO, even though the forward reaction is still exothermic.
The effect of temperature on the extent of the Boudouard reaction is indicated better by the value of the equilibrium constant than by the standard free energy of reaction. The value of log10(Keq) for the reaction as a function of temperature in Kelvin (valid between 500–2200 K ) is approximately: [4]
log10(Keq) has a value of zero at approx. 975 K .
The implication of the change in Keq with temperature is that a gas containing CO may form elemental carbon if the mixture cools below a certain temperature. The thermodynamic activity of carbon may be calculated for a CO/CO
2 mixture by knowing the partial pressure of each species and the value of Keq. For instance, in a high temperature reducing environment, such as that created for the reduction of iron oxide in a blast furnace or the preparation of carburizing atmospheres, [5] carbon monoxide is the stable oxide of carbon. When a gas rich in CO is cooled to the point where the activity of carbon exceeds one, the Boudouard reaction can take place. Carbon monoxide then tends to disproportionate into carbon dioxide and graphite, which forms soot.
In industrial catalysis, this is not just an eyesore; sooting (also called coking) can cause serious and even irreversible damage to catalysts and catalyst beds. This is a problem in the catalytic reforming of petroleum and the steam reforming of natural gas.
The reaction is named after the French chemist, Octave Leopold Boudouard (1872–1923), who investigated this equilibrium in 1905. [6]
Although the damaging effect of carbon monoxide on catalysts is undesirable, this reaction has been used in producing graphite flakes, filamentous graphite and lamellar graphite crystallites, as well as producing carbon nanotubes. [7] [8] [9] [10] In graphite production, catalysts used are molybdenum, magnesium, nickel, iron and cobalt, [7] [8] while in carbon nanotube production, molybdenum, nickel, cobalt, iron and Ni-MgO catalysts are used. [9] [10]
The Boudouard reaction is an important process inside a blast furnace. The reduction of iron oxides is not achieved by carbon directly, as reactions between solids are typically very slow, but by carbon monoxide. The resulting carbon dioxide undergoes a (reverse) Boudouard reaction upon contact with coke carbon.
While the Boudouard reaction is used deliberately in some processes, it is undesired in others. In the gas cooled, graphite moderated British nuclear reactors (Magnox and AGR) reaction between the CO2 coolant and the graphite moderator had to be avoided or at least kept to a minimum. As the equilibrium of the reaction shifts in favor of carbon at lower temperatures, this was solved in the Magnox reactor by simply having a lower operating temperature. However, this in turn reduced the achievable thermal efficiency. In the AGR, which was supposed to improve upon the lessons learned from the Magnox, a higher coolant outlet temperature was an explicit design goal (Britain being reliant on coal power at the time, the aim was to achieve the same steam temperature as in coal fired plants) and thus a re-entrant flow of coolant at the lower boiler outlet temperature of 278 °C (532 °F) is utilized to cool the graphite, ensuring that the graphite core temperatures do not vary too much from those seen in a Magnox reactor.
Carbon monoxide is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simplest carbon oxide. In coordination complexes, the carbon monoxide ligand is called carbonyl. It is a key ingredient in many processes in industrial chemistry.
The Haber process, also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. It converts atmospheric nitrogen (N2) to ammonia (NH3) by a reaction with hydrogen (H2) using a finely divided iron metal catalyst:
The Advanced Gas-cooled Reactor (AGR) is a type of nuclear reactor designed and operated in the United Kingdom. These are the second generation of British gas-cooled reactors, using graphite as the neutron moderator and carbon dioxide as coolant. They have been the backbone of the UK's nuclear power generation fleet since the 1980s.
Magnox is a type of nuclear power / production reactor that was designed to run on natural uranium with graphite as the moderator and carbon dioxide gas as the heat exchange coolant. It belongs to the wider class of gas-cooled reactors. The name comes from the magnesium-aluminium alloy, used to clad the fuel rods inside the reactor. Like most other "Generation I nuclear reactors", the Magnox was designed with the dual purpose of producing electrical power and plutonium-239 for the nascent nuclear weapons programme in Britain. The name refers specifically to the United Kingdom design but is sometimes used generically to refer to any similar reactor.
In petrochemistry, petroleum geology and organic chemistry, cracking is the process whereby complex organic molecules such as kerogens or long-chain hydrocarbons are broken down into simpler molecules such as light hydrocarbons, by the breaking of carbon–carbon bonds in the precursors. The rate of cracking and the end products are strongly dependent on the temperature and presence of catalysts. Cracking is the breakdown of large hydrocarbons into smaller, more useful alkanes and alkenes. Simply put, hydrocarbon cracking is the process of breaking long-chain hydrocarbons into short ones. This process requires high temperatures.
Industrial processes are procedures involving chemical, physical, electrical, or mechanical steps to aid in the manufacturing of an item or items, usually carried out on a very large scale. Industrial processes are the key components of heavy industry.
Thorium dioxide (ThO2), also called thorium(IV) oxide, is a crystalline solid, often white or yellow in colour. Also known as thoria, it is mainly a by-product of lanthanide and uranium production. Thorianite is the name of the mineralogical form of thorium dioxide. It is moderately rare and crystallizes in an isometric system. The melting point of thorium oxide is 3300 °C – the highest of all known oxides. Only a few elements (including tungsten and carbon) and a few compounds (including tantalum carbide) have higher melting points. All thorium compounds, including the dioxide, are radioactive because there are no stable isotopes of thorium.
The Bosch reaction is a catalytic chemical reaction between carbon dioxide (CO2) and hydrogen (H2) that produces elemental carbon (C,graphite), water, and a 10% return of invested heat. CO2 is usually reduced by H2 to carbon in presence of a catalyst (e.g. iron (Fe)) and requires a temperature level of 530–730 °C (986–1,346 °F).
The Fischer–Tropsch process (FT) is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen, known as syngas, into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The Fischer–Tropsch process is an important reaction in both coal liquefaction and gas to liquids technology for producing liquid hydrocarbons.
Steam reforming or steam methane reforming (SMR) is a method for producing syngas (hydrogen and carbon monoxide) by reaction of hydrocarbons with water. Commonly natural gas is the feedstock. The main purpose of this technology is hydrogen production. The reaction is represented by this equilibrium:
The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures and pressures in the presence of a nickel catalyst. It was discovered by the French chemists Paul Sabatier and Jean-Baptiste Senderens in 1897. Optionally, ruthenium on alumina makes a more efficient catalyst. It is described by the following exothermic reaction:
The water–gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen:
An Ellingham diagram is a graph showing the temperature dependence of the stability of compounds. This analysis is usually used to evaluate the ease of reduction of metal oxides and sulfides. These diagrams were first constructed by Harold Ellingham in 1944. In metallurgy, the Ellingham diagram is used to predict the equilibrium temperature between a metal, its oxide, and oxygen — and by extension, reactions of a metal with sulfur, nitrogen, and other non-metals. The diagrams are useful in predicting the conditions under which an ore will be reduced to its metal. The analysis is thermodynamic in nature and ignores reaction kinetics. Thus, processes that are predicted to be favourable by the Ellingham diagram can still be slow.
A gas-cooled reactor (GCR) is a nuclear reactor that uses graphite as a neutron moderator and a gas as coolant. Although there are many other types of reactor cooled by gas, the terms GCR and to a lesser extent gas cooled reactor are particularly used to refer to this type of reactor.
Deoxidization is a method used in metallurgy to remove the rest of oxygen content from previously reduced iron ore during steel manufacturing. In contrast, antioxidants are used for stabilization, such as in the storage of food. Deoxidation is important in the steelmaking process as oxygen is often detrimental to the quality of steel produced. Deoxidization is mainly achieved by adding a separate chemical species to neutralize the effects of oxygen or by directly removing the oxygen.
The electrochemical reduction of carbon dioxide, also known as CO2RR, is the conversion of carbon dioxide to more reduced chemical species using electrical energy. It represents one potential step in the broad scheme of carbon capture and utilization.
Filamentous carbon is a carbon-containing deposit structure that refers to several allotropes of carbon, including carbon nanotubes, carbon nanofibers, and microcoils. It forms from gaseous carbon compounds. Filamentous carbon structures all contain metal particles. These are either iron, cobalt, or nickel or their alloys. Deposits of it also significantly disrupt synthesis gas methanation. Acetylene is involved in a number of method of the production of filamentous carbon. The structures of filamentous carbon are mesoporous and on the micrometer scale in dimension. Most reactions that form the structures take place at or above 280 °C (536 °F).
Techniques have been developed to produce carbon nanotubes (CNTs) in sizable quantities, including arc discharge, laser ablation, high-pressure carbon monoxide disproportionation, and chemical vapor deposition (CVD). Most of these processes take place in a vacuum or with process gases. CVD growth of CNTs can occur in a vacuum or at atmospheric pressure. Large quantities of nanotubes can be synthesized by these methods; advances in catalysis and continuous growth are making CNTs more commercially viable.
Steam cracking is a petrochemical process in which saturated hydrocarbons are broken down into smaller, often unsaturated, hydrocarbons. It is the principal industrial method for producing the lighter alkenes, including ethene and propene. Steam cracker units are facilities in which a feedstock such as naphtha, liquefied petroleum gas (LPG), ethane, propane or butane is thermally cracked through the use of steam in steam cracking furnaces to produce lighter hydrocarbons. The propane dehydrogenation process may be accomplished through different commercial technologies. The main differences between each of them concerns the catalyst employed, design of the reactor and strategies to achieve higher conversion rates.
Sorption enhanced water gas shift (SEWGS) is a technology that combines a pre-combustion carbon capture process with the water gas shift reaction (WGS) in order to produce a hydrogen rich stream from the syngas fed to the SEWGS reactor.
Robinson, R. J. "Boudouard Process for Synthesis Gas". ABC of Alternative Energy. Archived from the original on 21 January 2018. Retrieved 12 July 2013.