Demjanov rearrangement

Last updated

The Demjanov rearrangement is the chemical reaction of primary amines with nitrous acid to give rearranged alcohols. It involves substitution by a hydroxyl group with a possible ring expansion. It is named after the Russian chemist Nikolai Jakovlevich Demjanov (Dem'anov, Demianov), who first reported it in 1903.

Contents

Demjanov Rearrangement Scheme.png

Reaction mechanism

The reaction process begins with diazotization of the amine by nitrous acid. The diazonium group is a good leaving group, forming nitrogen gas when displaced from the organic structure. This displacement can occur via a rearrangement (path A), in which one of the sigma bonds adjacent to the diazo group migrates. This migration results in an expansion of the ring. The resulting carbocation is then attacked by a molecule of water. Alternately, the diazo group can be displaced directly by a molecule of water in an SN2 reaction (path B). Both routes lead to formation of an alcohol.

A. Demjanov mech rearrangement.png
B. Demjanov mech SN2.png

Uses

The Demjanov rearrangement is a method to produce a 1-carbon ring enlargement in four, five or six membered rings. The resulting five, six, and seven-membered rings can then be used in further synthetic reactions.

It has been shown that the Demjanov reaction is susceptible to regioselectivity. One example of this is a study conducted by D. Fattori looking at the regioselectivity of the Demjanov rearrangement in one-carbon enlargements of naked sugars. It showed that when an exo methylamine underwent Demjanov nitrous acid deamination, ring enlargement was not produced.

Demjanov Fattori-exo.png

However, when the endo methylamine underwent the same conditions, a mixture of rearranged alcohols were produced.

Demjanov Fattori-endo.png

Problems

This rearrangement also leads to a substituted, but not expanded, byproduct. Thus it can be difficult to isolate the two products and acquire the desired yield. Also, stereoisomers are produced depending on the direction of addition of the water molecule and other molecules may be produced depending on rearrangements.

Variations

Tiffeneau-Demjanov rearrangement

The Tiffeneau-Demjanov rearrangement (after Marc Tiffeneau and Nikolai Demjanov) is a variation of the Demjanov rearrangement, which involves both a ring expansion and the production of a ketone by using sodium nitrite and hydrogen cation. Using the Tiffeneau-Demjanov reaction is often advantageous as, while there are rearrangements possible in the products, the reactant always undergoes ring enlargement. As in the Demjanov rearrangement, products illustrate regioselectivity in the reaction. Migratory aptitudes of functional groups dictate rearrangement products.

Use of diazomethane

Diazomethane also produces ring enlargement, and its reaction is mechanistically similar to the Tiffeneau-Demjanov rearrangement.

Related Research Articles

<span class="mw-page-title-main">Nitrous acid</span> Chemical compound

Nitrous acid is a weak and monoprotic acid known only in solution, in the gas phase, and in the form of nitrite salts. It was discovered by Carl Wilhelm Scheele, who called it "phlogisticated acid of niter". Nitrous acid is used to make diazonium salts from amines. The resulting diazonium salts are reagents in azo coupling reactions to give azo dyes.

In organic chemistry, the diazo group is an organic moiety consisting of two linked nitrogen atoms at the terminal position. Overall charge-neutral organic compounds containing the diazo group bound to a carbon atom are called diazo compounds or diazoalkanes and are described by the general structural formula R2C=N+=N. The simplest example of a diazo compound is diazomethane, CH2N2. Diazo compounds should not be confused with azo compounds or with diazonium compounds.

The 1,3-dipolar cycloaddition is a chemical reaction between a 1,3-dipole and a dipolarophile to form a five-membered ring. The earliest 1,3-dipolar cycloadditions were described in the late 19th century to the early 20th century, following the discovery of 1,3-dipoles. Mechanistic investigation and synthetic application were established in the 1960s, primarily through the work of Rolf Huisgen. Hence, the reaction is sometimes referred to as the Huisgen cycloaddition. 1,3-dipolar cycloaddition is an important route to the regio- and stereoselective synthesis of five-membered heterocycles and their ring-opened acyclic derivatives. The dipolarophile is typically an alkene or alkyne, but can be other pi systems. When the dipolarophile is an alkyne, aromatic rings are generally produced.

The Simmons–Smith reaction is an organic cheletropic reaction involving an organozinc carbenoid that reacts with an alkene to form a cyclopropane. It is named after Howard Ensign Simmons, Jr. and Ronald D. Smith. It uses a methylene free radical intermediate that is delivered to both carbons of the alkene simultaneously, therefore the configuration of the double bond is preserved in the product and the reaction is stereospecific.

<span class="mw-page-title-main">Bamford–Stevens reaction</span> Synthesis of alkenes by base-catalysed decomposition of tosylhydrazones

The Bamford–Stevens reaction is a chemical reaction whereby treatment of tosylhydrazones with strong base gives alkenes. It is named for the British chemist William Randall Bamford and the Scottish chemist Thomas Stevens Stevens (1900–2000). The usage of aprotic solvents gives predominantly Z-alkenes, while protic solvent gives a mixture of E- and Z-alkenes. As an alkene-generating transformation, the Bamford–Stevens reaction has broad utility in synthetic methodology and complex molecule synthesis.

In organic chemistry, the Arndt–Eistert reaction is the conversion of a carboxylic acid to its homologue. Named for the German chemists Fritz Arndt (1885–1969) and Bernd Eistert (1902–1978), the method entails treating an acid chlorides with diazomethane. It is a popular method of producing β-amino acids from α-amino acids.

<span class="mw-page-title-main">Ring expansion and contraction</span> Chemical phenomenon within ring systems

Ring expansion and ring contraction reactions expand or contract rings, usually in organic chemistry. The term usually refers to reactions involve making and breaking C-C bonds, Diverse mechanisms lead to these kinds of reactions.

<span class="mw-page-title-main">Holton Taxol total synthesis</span>

The Holton Taxol total synthesis, published by Robert A. Holton and his group at Florida State University in 1994, was the first total synthesis of Taxol.

<span class="mw-page-title-main">Tiffeneau–Demjanov rearrangement</span>

The Tiffeneau–Demjanov rearrangement (TDR) is the chemical reaction of a 1-aminomethyl-cycloalkanol with nitrous acid to form an enlarged cycloketone.

<span class="mw-page-title-main">Wolff rearrangement</span>

The Wolff rearrangement is a reaction in organic chemistry in which an α-diazocarbonyl compound is converted into a ketene by loss of dinitrogen with accompanying 1,2-rearrangement. The Wolff rearrangement yields a ketene as an intermediate product, which can undergo nucleophilic attack with weakly acidic nucleophiles such as water, alcohols, and amines, to generate carboxylic acid derivatives or undergo [2+2] cycloaddition reactions to form four-membered rings. The mechanism of the Wolff rearrangement has been the subject of debate since its first use. No single mechanism sufficiently describes the reaction, and there are often competing concerted and carbene-mediated pathways; for simplicity, only the textbook, concerted mechanism is shown below. The reaction was discovered by Ludwig Wolff in 1902. The Wolff rearrangement has great synthetic utility due to the accessibility of α-diazocarbonyl compounds, variety of reactions from the ketene intermediate, and stereochemical retention of the migrating group. However, the Wolff rearrangement has limitations due to the highly reactive nature of α-diazocarbonyl compounds, which can undergo a variety of competing reactions.

The Nazarov cyclization reaction is a chemical reaction used in organic chemistry for the synthesis of cyclopentenones. The reaction is typically divided into classical and modern variants, depending on the reagents and substrates employed. It was originally discovered by Ivan Nikolaevich Nazarov (1906–1957) in 1941 while studying the rearrangements of allyl vinyl ketones.

<span class="mw-page-title-main">Cyclopropanation</span> Chemical process which generates cyclopropane rings

In organic chemistry, cyclopropanation refers to any chemical process which generates cyclopropane rings. It is an important process in modern chemistry as many useful compounds bear this motif; for example pyrethroid insecticides and a number of quinolone antibiotics. However, the high ring strain present in cyclopropanes makes them challenging to produce and generally requires the use of highly reactive species, such as carbenes, ylids and carbanions. Many of the reactions proceed in a cheletropic manner.

<span class="mw-page-title-main">Nierenstein reaction</span>

The Nierenstein reaction is an organic reaction describing the conversion of an acid chloride into a haloketone with diazomethane. It is an insertion reaction in that the methylene group from the diazomethane is inserted into the carbon-chlorine bond of the acid chloride.

In organic chemistry, a homologation reaction, also known as homologization, is any chemical reaction that converts the reactant into the next member of the homologous series. A homologous series is a group of compounds that differ by a constant unit, generally a methylene group. The reactants undergo a homologation when the number of a repeated structural unit in the molecules is increased. The most common homologation reactions increase the number of methylene units in saturated chain within the molecule. For example, the reaction of aldehydes or ketones with diazomethane or methoxymethylenetriphenylphosphine to give the next homologue in the series.

<span class="mw-page-title-main">2.2.2-Propellane</span> Chemical compound

[2.2.2]Propellane, formally tricyclo[2.2.2.01,4]octane is an organic compound, a member of the propellane family. It is a hydrocarbon with formula C8H12, or C2(C2H4)3. Its molecule has three rings with four carbon atoms each, sharing one C–C bond.

An insertion reaction is a chemical reaction where one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

The Buchner ring expansion is a two-step organic C-C bond forming reaction used to access 7-membered rings. The first step involves formation of a carbene from ethyl diazoacetate, which cyclopropanates an aromatic ring. The ring expansion occurs in the second step, with an electrocyclic reaction opening the cyclopropane ring to form the 7-membered ring.

The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. It was first described by Eduard Buchner and Theodor Curtius in 1885 and later by Fritz Schlotterbeck in 1907. Two German chemists also preceded Schlotterbeck in discovery of the reaction, Hans von Pechmann in 1895 and Viktor Meyer in 1905. The reaction has since been extended to the synthesis of β-keto esters from the condensation between aldehydes and diazo esters. The general reaction scheme is as follows:

Rearrangements, especially those that can participate in cascade reactions, such as the aza-Cope rearrangements, are of high practical as well as conceptual importance in organic chemistry, due to their ability to quickly build structural complexity out of simple starting materials. The aza-Cope rearrangements are examples of heteroatom versions of the Cope rearrangement, which is a [3,3]-sigmatropic rearrangement that shifts single and double bonds between two allylic components. In accordance with the Woodward-Hoffman rules, thermal aza-Cope rearrangements proceed suprafacially. Aza-Cope rearrangements are generally classified by the position of the nitrogen in the molecule :

The Danheiser benzannulation is a chemical reaction used in organic chemistry to generate highly substituted phenols in a single step. It is named after Rick L. Danheiser who developed the reaction.

References

  1. ^ Demjanov, N. J.; Lushnikov, M. (1903). "[Products of the action of nitrous acid on tetramethylenylmethylamine]". Zhurnal Russkago Fiziko-Khimicheskago Obshchestva [J. Russ. Phys. Chem.] (in Russian). 35: 26–42.
  2. ^ Demjanov, N. J.; Lushnikov, M. (1903). Chem. Zentr. 1: 828.{{cite journal}}: Missing or empty |title= (help)
  3. ^ Smith, P. A. S.; Baer, D. R. (1960). Org. React. 11: 157.{{cite journal}}: Missing or empty |title= (help) (Review)
  4. ^ Jack Li, Jie (2006). Name Reactions (Third ed.). Berlin: Springer.
  5. ^ Chow, L; McClure, M; White, J (2004). "Silicon and tin-directed Tiffeneau-Demjanov reaction". Org. Biomol. Chem. 2 (5): 648–50. doi:10.1039/b314923d. PMID   14985802.
  6. ^ Fattori, D.; Henry, S.; Vogel, P. (1993). "The Demjanov and Tiffeneau-Demjanov one-carbon ring enlargements of 2-aminomethyl-7-oxabicyclo[2.2.1]heptane derivatives. The stereo- and regioselective additions of 8-oxabicyclo[3.2.1]oct-6-en-2-one to soft electrophiles". Tetrahedron. 49 (8): 1649–1664. doi:10.1016/S0040-4020(01)80352-5.
  7. ^ McKinney, M.A.; Patel, P.P. (1973). "Ring expansions. I. Diazomethane and Tiffeneau-Demjanov ring expansions of norcamphor and dehydronorcamphor". J. Org. Chem. 38 (23): 4059. doi:10.1021/jo00987a023.
  8. ^ Kotani, R. (1965). "Demjanov Rearrangement of 1-Methylcyclohexanemethylamine". J. Org. Chem. 30 (2): 350–354. doi:10.1021/jo01013a009.
  9. ^ Diamond, J.; Bruce, W.F.; Tyson, F.T. (1965). "Hexahydro-1-methyl-4-phenyl-4-acetoxyazepine and the Demjanov Rearrangement of 1-Methyl-4-phenylpiperidine-4-methylamine*". J. Org. Chem. 30 (6): 1840. doi:10.1021/jo01017a030.
  10. ^ Nakazaki, M.; Naemura, K.; Hashimoto, M. (1985). "Unusual consecutive rearrangements in the Demjanov ring-expansion reaction of 2-(aminomethyl)-D2d-dinoradamantane and 9-(aminomethyl)noradamantane". J. Org. Chem. 48 (13): 2289. doi:10.1021/jo00161a033.
  11. ^ Jones, J.B.; Price, P. (1973). "Steroids and steroidases—XIX: Comparison of diazomethane and tiffeneau-demjanov homologations of 5α-3-oxosteroids. Evidence for predominant equatorial approach of the C-3 carbonyl group by diazomethane". Tetrahedron. 29 (14): 1941–1947. doi:10.1016/0040-4020(73)80128-0.
  12. ^ Stern, A.G.; Nickon, A. (1992). "Synthesis of brexan-2-one and ring-expanded congeners". J. Org. Chem. 57 (20): 5432. doi:10.1021/jo00046a015.