Minisci reaction

Last updated • 2 min readFrom Wikipedia, The Free Encyclopedia
Minisci reaction
Named afterFrancesco Minisci
Reaction type Coupling reaction

The Minisci reaction (Italian: [miˈniʃʃi] ) is a named reaction in organic chemistry. It is a nucleophilic radical substitution to an electron deficient aromatic compound, most commonly the introduction of an alkyl group to a nitrogen containing heterocycle. The reaction was published in 1971 by F. Minisci. [1] In the case of N-Heterocycles, the conditions must be acidic to ensure protonation of said heterocycle. [2] A typical reaction is that between pyridine and pivalic acid with silver nitrate, sulfuric acid and ammonium persulfate to form 2-tert-butylpyridine. The reaction resembles Friedel-Crafts alkylation but with opposite reactivity and selectivity. [3]

Contents

The Minisci reaction often produces a mixture of regioisomers that can complicate product purification, but modern reaction conditions are incredibly mild, allowing a wide range of alkyl groups to be introduced. [4] Depending on the radical source used, one side-reaction is acylation, [5] with the ratio between alkylation and acylation depending on the substrate and the reaction conditions. Due to the inexpensive raw materials and simple reaction conditions, the Minisci reaction has found many applications in heterocyclic chemistry. [6] [7]

Minisci-Reaktion.png

Utility of the Minisci Reaction

The reaction allows for alkylation of electron deficient heterocyclic species which is not possible with Friedel-Crafts chemistry. [8] A method for alkylating electron deficient arenes, nucleophilic aromatic substitution, is also unavailable to electron deficient heterocycles as the ionic nucleophilic species used will deprotonate the heterocycle over acting as a nucleophile. Again, in contrast to nucleophilic aromatic substitution, the Minisci reaction does not require functionalisation of the arene, allowing for direct C-H functionalisation. [8]

Further to this, the generated alkyl radical species will not rearrange during the reaction in the way that alkyl fragments appended by Friedel-Crafts alkylation often will; meaning groups such as n-pentyl and cyclopropyl groups can be added unchanged. [1] The alkyl radical is also a 'soft' nucleophile and so is very unlikely to interact with any 'hard' electrophiles (carbonyl species for example) already present on the heterocycle, [9] which increases the functional group tolerance of the reaction.

The reaction has been the subject of much research in recent years, with a focus placed on improved reactivity towards a greater variety of heterocycles, increasing the number of alkylating reagents that can be used, and employing milder oxidants and acids. [10] [11]

Mechanism

A free radical is formed from the carboxylic acid in an oxidative decarboxylation with silver salts and an oxidizing agent. The oxidizing agent (ammonium persulfate) oxidizes the Ag(+) to Ag(2+) under the acidic reaction conditions. This induces a hydrogen atom abstraction by the silver, followed by radical decarboxylation. The carbon-centered radical then reacts with the pyridinium aromatic compound. The ultimate product is formed by rearomatization. The acylated product is formed from the acyl radical. [4] [5]

Minisci-Mech.png

Related Research Articles

Pyrimidine is an aromatic, heterocyclic, organic compound similar to pyridine. One of the three diazines, it has nitrogen atoms at positions 1 and 3 in the ring. The other diazines are pyrazine and pyridazine.

<span class="mw-page-title-main">Acyl group</span> Chemical group (R–C=O)

In chemistry, an acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, including inorganic acids. It contains a double-bonded oxygen atom and an organyl group or hydrogen in the case of formyl group. In organic chemistry, the acyl group is usually derived from a carboxylic acid, in which case it has the formula R−C(=O)−, where R represents an organyl group or hydrogen. Although the term is almost always applied to organic compounds, acyl groups can in principle be derived from other types of acids such as sulfonic acids and phosphonic acids. In the most common arrangement, acyl groups are attached to a larger molecular fragment, in which case the carbon and oxygen atoms are linked by a double bond.

Pyrrole is a heterocyclic, aromatic, organic compound, a five-membered ring with the formula C4H4NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N-methylpyrrole, C4H4NCH3. Porphobilinogen, a trisubstituted pyrrole, is the biosynthetic precursor to many natural products such as heme.

<span class="mw-page-title-main">Organic sulfide</span> Organic compound with an –S– group

In organic chemistry, a sulfide or thioether is an organosulfur functional group with the connectivity R−S−R' as shown on right. Like many other sulfur-containing compounds, volatile sulfides have foul odors. A sulfide is similar to an ether except that it contains a sulfur atom in place of the oxygen. The grouping of oxygen and sulfur in the periodic table suggests that the chemical properties of ethers and sulfides are somewhat similar, though the extent to which this is true in practice varies depending on the application.

In chemistry, a nucleophilic substitution (SN) is a class of chemical reactions in which an electron-rich chemical species replaces a functional group within another electron-deficient molecule. The molecule that contains the electrophile and the leaving functional group is called the substrate.

<span class="mw-page-title-main">Leaving group</span> Atom(s) which detach from the substrate during a chemical reaction

In chemistry, a leaving group is defined by the IUPAC as an atom or group of atoms that detaches from the main or residual part of a substrate during a reaction or elementary step of a reaction. However, in common usage, the term is often limited to a fragment that departs with a pair of electrons in heterolytic bond cleavage. In this usage, a leaving group is a less formal but more commonly used synonym of the term nucleofuge. In this context, leaving groups are generally anions or neutral species, departing from neutral or cationic substrates, respectively, though in rare cases, cations leaving from a dicationic substrate are also known.

The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877 to attach substituents to an aromatic ring. Friedel–Crafts reactions are of two main types: alkylation reactions and acylation reactions. Both proceed by electrophilic aromatic substitution.

<span class="mw-page-title-main">Alkylation</span> Transfer of an alkyl group from one molecule to another

Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene. Alkylating agents are reagents for effecting alkylation. Alkyl groups can also be removed in a process known as dealkylation. Alkylating agents are often classified according to their nucleophilic or electrophilic character. In oil refining contexts, alkylation refers to a particular alkylation of isobutane with olefins. For upgrading of petroleum, alkylation produces a premium blending stock for gasoline. In medicine, alkylation of DNA is used in chemotherapy to damage the DNA of cancer cells. Alkylation is accomplished with the class of drugs called alkylating antineoplastic agents.

<span class="mw-page-title-main">Organolithium reagent</span> Chemical compounds containing C–Li bonds

In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation. Organolithium reagents are used in industry as an initiator for anionic polymerization, which leads to the production of various elastomers. They have also been applied in asymmetric synthesis in the pharmaceutical industry. Due to the large difference in electronegativity between the carbon atom and the lithium atom, the C−Li bond is highly ionic. Owing to the polar nature of the C−Li bond, organolithium reagents are good nucleophiles and strong bases. For laboratory organic synthesis, many organolithium reagents are commercially available in solution form. These reagents are highly reactive, and are sometimes pyrophoric.

Electrophilic substitution reactions are chemical reactions in which an electrophile displaces a functional group in a compound, which is typically, but not always, aromatic. Aromatic substitution reactions are characteristic of aromatic compounds and are common ways of introducing functional groups into benzene rings. Some aliphatic compounds can undergo electrophilic substitution as well.

Thiazole, or 1,3-thiazole, is a 5-membered heterocyclic compound that contains both sulfur and nitrogen. The term 'thiazole' also refers to a large family of derivatives. Thiazole itself is a pale yellow liquid with a pyridine-like odor and the molecular formula C3H3NS. The thiazole ring is notable as a component of the vitamin thiamine (B1).

<i>N</i>,<i>N</i>-Diisopropylethylamine Chemical compound

N,N-Diisopropylethylamine, or Hünig's base, is an organic compound that is a tertiary amine. It is named after the German chemist Siegfried Hünig. It is used in organic chemistry as a non-nucleophilic base. It is commonly abbreviated as DIPEA,DIEA, or i-Pr2NEt.

<span class="mw-page-title-main">Carbenium ion</span> Class of ions

A carbenium ion is a positive ion with the structure RR′R″C+, that is, a chemical species with carbon atom having three covalent bonds, and it bears a +1 formal charge. Carbenium ions are a major subset of carbocations, which is a general term for diamagnetic carbon-based cations. In parallel with carbenium ions is another subset of carbocations, the carbonium ions with the formula R5+. In carbenium ions charge is localized. They are isoelectronic with monoboranes such as B(CH3)3.

<span class="mw-page-title-main">Dakin oxidation</span> Organic redox reaction that converts hydroxyphenyl aldehydes or ketones into benzenediols

The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H2O2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H2O2 is reduced.

In organosilicon chemistry, silyl enol ethers are a class of organic compounds that share the common functional group R3Si−O−CR=CR2, composed of an enolate bonded to a silane through its oxygen end and an ethene group as its carbon end. They are important intermediates in organic synthesis.

<span class="mw-page-title-main">Meerwein arylation</span> Organic reaction

The Meerwein arylation is an organic reaction involving the addition of an aryl diazonium salt (ArN2X) to an electron-poor alkene usually supported by a metal salt. The reaction product is an alkylated arene compound. The reaction is named after Hans Meerwein, one of its inventors who first published it in 1939.

<span class="mw-page-title-main">Vicarious nucleophilic substitution</span>

In organic chemistry, the vicarious nucleophilic substitution is a special type of nucleophilic aromatic substitution in which a nucleophile replaces a hydrogen atom on the aromatic ring and not leaving groups such as halogen substituents which are ordinarily encountered in SNAr. This reaction type was reviewed in 1987 by Polish chemists Mieczysław Mąkosza and Jerzy Winiarski.

Amine alkylation (amino-dehalogenation) is a type of organic reaction between an alkyl halide and ammonia or an amine. The reaction is called nucleophilic aliphatic substitution, and the reaction product is a higher substituted amine. The method is widely used in the laboratory, but less so industrially, where alcohols are often preferred alkylating agents.

Electrophilic aromatic substitution (SEAr) is an organic reaction in which an atom that is attached to an aromatic system is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration, aromatic halogenation, aromatic sulfonation, alkylation Friedel–Crafts reaction and acylation Friedel–Crafts reaction.

<span class="mw-page-title-main">Hafnium trifluoromethanesulfonate</span> Chemical compound

Hafnium(IV) triflate or hafnium trifluoromethansulfonate is a salt with the formula Hf(OSO2CF3)4, also written as Hf(OTf)4. Hafnium triflate is used as an impure mixture as a catalyst. Hafnium (IV) has an ionic radius of intermediate range (Al < Ti < Hf < Zr < Sc < Ln) and has an oxophilic hard character typical of group IV metals. This solid is a stronger Lewis acid than its typical precursor hafnium tetrachloride, HfCl4, because of the strong electron-withdrawing nature of the four triflate groups, which makes it a great Lewis acid and has many uses including as a great catalyst at low Lewis acid loadings for electrophilic aromatic substitution and nucleophilic substitution reactions.

References

  1. 1 2 Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. (1971). "Nucleophilic character of alkyl radicals—VI : A new convenient selective alkylation of heteroaromatic bases". Tetrahedron . 27: 3575–3579. doi:10.1016/s0040-4020(01)97768-3.
  2. Li, Jie Jack (2009). "Minisci reaction". Name Reactions. pp. 361–362. doi:10.1007/978-3-642-01053-8_163. ISBN   978-3-642-01052-1.
  3. Strategic applications of named reactions in organic synthesis: background and detailed mechanisms László Kürti, Barbara Czakó 2005
  4. 1 2 Fontana, Francesca; Minisci, Francesco; Nogueira Barbosa, Maria Claudia; Vismara, Elena (1991). "Homolytic acylation of protonated pyridines and pyrazines with .alpha.-keto acids: The problem of monoacylation". The Journal of Organic Chemistry. 56 (8): 2866–2869. doi:10.1021/jo00008a050.
  5. 1 2 Bennasar, M.-Lluïsa; Roca, Tomàs; Griera, Rosa; Bosch, Joan (2001). "Generation and Intermolecular Reactions of 2-Indolylacyl Radicals". Organic Letters. 3 (11): 1697–1700. doi:10.1021/ol0100576. PMID   11405689.
  6. Miller, Benjamin; Palde, Prakash; McNaughton, Brian; Ross, Nathan; Gareiss, Peter; Mace, Charles; Spitale, Robert (2007). "Single-Step Synthesis of Functional Organic Receptors via a Tridirectional Minisci Reaction". Synthesis. 2007 (15): 2287–2290. doi:10.1055/s-2007-983792.
  7. J. A. Joules, K. Mills: Heterocyclic Chemistry, 5. Auflage, S. 125–141, Blackwell Publishing, Chichester, 2010, ISBN   978-1-4051-9365-8.
  8. 1 2 Antonietti, Fabrizio; Mele, Andrea; Minisci, Francesco; Punta, Carlo; Recupero, Francesco; Fontana, Francesca (February 2004). "Enthalpic and polar effects in the reactions of perfluoroalkyl radicals". Journal of Fluorine Chemistry. 125 (2): 205–211. doi:10.1016/j.jfluchem.2003.07.012. ISSN   0022-1139.
  9. Tauber, Johannes; Imbri, Dennis; Opatz, Till; Tauber, Johannes; Imbri, Dennis; Opatz, Till (2014-10-10). "Radical Addition to Iminium Ions and Cationic Heterocycles". Molecules. 19 (10): 16190–16222. doi: 10.3390/molecules191016190 . PMC   6270771 . PMID   25310148.
  10. Duncton, Matthew A. J. (2011). "Minisci reactions: Versatile CH-functionalizations for medicinal chemists". MedChemComm. 2 (12): 1135. doi:10.1039/C1MD00134E. ISSN   2040-2503.
  11. Proctor, R. S. J.; Phipps, R. J. (2019). "Recent Advances in Minisci-Type Reactions" (PDF). Angewandte Chemie International Edition. 58 (39): 13666–13699. doi:10.1002/anie.201900977. PMID   30888102. S2CID   83463455.