Diazonium compound

Last updated
Benzenediazonium cation. Benzenediazonium cation.png
Benzenediazonium cation.

Diazonium compounds or diazonium salts are a group of organic compounds sharing a common functional group [R−N+≡N]X where R can be any organic group, such as an alkyl or an aryl, and X is an inorganic or organic anion, such as a halide.

Contents

General properties and reactivity

According to X-ray crystallography the C−N+≡N linkage is linear in typical diazonium salts. The N+≡N bond distance in benzenediazonium tetrafluoroborate is 1.083(3) Å, [1] which is almost identical to that for dinitrogen molecule (N≡N).

The linear free energy constants σm and σp indicate that the diazonium group is strongly electron-withdrawing. Thus, the diazonio-substituted phenols and benzoic acids have greatly reduced pKa values compared to their unsubstituted counterparts. The pKa of phenolic proton of 4-hydroxybenzenediazonium is 3.4, [2] versus 9.9 for phenol itself. In other words, the diazonium group lowers the pKa (enhances the acidity) by a million-fold. This also causes arenediazonium salts to have decreased reactivity when electron-donating groups are present on the aromatic ring. [3]

The stability of arenediazonium salts is highly sensitive to the counterion. Phenyldiazonium chloride is dangerously explosive, but benzenediazonium tetrafluoroborate is easily handled on the bench.[ citation needed ]

SN1 and SN2 reactions do not occur.

The aromatic substitution reactivity of aryl diazonium salts is mainly characterized via aryl radicals, as shown in the reactions below.

Departure of dinitrogen from the diazonium salt can also yield aryl cations, which is an intermediate in some of its reactions like the Sandmeyer reaction. Such a departure is observed to be somewhat reversible, indicated by the isotope scrambling of the nitrogen atoms. [3]

Arenediazonium salts are versatile reagents as described in the next sections [4] After electrophilic aromatic substitution, diazonium chemistry is the most frequently applied strategy to prepare aromatic compounds.

Alkanediazonium salts are synthetically unimportant due to their extreme and uncontrolled reactivity toward SN2/SN1/E1 substitution. These cations are however of theoretical interest. Furthermore, methyldiazonium carboxylate is believed to be an intermediate in the methylation of carboxylic acids by diazomethane, a common transformation. [5] [6]

Methylation with diazomethane. Diazomethanemethylation.png
Methylation with diazomethane.

Loss of N2 is both enthalpically and entropically favorable:

[CH3N2]+[CH3]+ + N2, ΔH = −43 kcal/mol
[CH3CH2N2]+[CH3CH2]+ + N2, ΔH = −11 kcal/mol

For secondary and tertiary alkanediazonium species, the enthalpic change is calculated to be close to zero or negative, with minimal activation barrier. Hence, secondary and (especially) tertiary alkanediazonium species are either unbound, nonexistent species or, at best, extremely fleeting intermediates. [7]

The aqueous pKa of methyldiazonium ([CH3N2]+) is estimated to be <10. [8]

Preparation

The process of forming diazonium compounds is called "diazotation", "diazoniation", or "diazotization". The reaction was first reported by Peter Griess in 1858, who subsequently discovered several reactions of this new class of compounds. Most commonly, diazonium salts are prepared by treatment of aromatic amines with nitrous acid and additional acid. Usually the nitrous acid is generated in situ (in the same flask) from sodium nitrite and the excess mineral acid (usually aqueous HCl, H2SO4, p-H3CC6H4SO3H, or H[BF4]):

ArNH2 + HNO2 + HX → [ArN2]+X + 2 H2O
Sample of benzenediazonium tetrafluoroborate. PhN2BF4.jpg
Sample of benzenediazonium tetrafluoroborate.

Chloride salts of diazonium cation, traditionally prepared from the aniline, sodium nitrite, and hydrochloric acid, are unstable at room temperature and are classically prepared at 0 – 5 °C. However, one can isolate diazonium compounds as tetrafluoroborate or tosylate salts, [9] which are stable solids at room temperature. [10] It is often preferred that the diazonium salt remain in solution, but they do tend to supersaturate. Operators have been injured or even killed by an unexpected crystallization of the salt followed by its detonation. [11]

Due to these hazards, diazonium compounds are often not isolated. Instead they are used in situ. This approach is illustrated in the preparation of an arenesulfonyl compound: [12]

Preparation of m-trifluoromethylbenzenesulfonyl chloride.svg

Diazo coupling reactions

The first use of diazonium salts was to produce water-fast dyed fabrics by immersing the fabric in an aqueous solution of the diazonium compound, followed by immersion in a solution of the coupler (the electron-rich ring that undergoes electrophilic substitution). The major applications of diazonium compounds remains in the dye and pigment industry. [13]

The most widely practiced reaction of diazonium salts remains azo coupling, which is exploited in the production of azo dyes. [14] In this process, the diazonium compound is attacked by, i.e., coupled to, electron-rich substrates. When the coupling partners are arenes such as anilines and phenols, the process is an example of electrophilic aromatic substitution:

[ArN2]+ + Ar'H → ArN2Ar' + H+
Azo-coupling-A-2D-skeletal.svg
Azo-coupling-B-2D-skeletal.svg

Another commercially important class of coupling partners are acetoacetic amides, as illustrated by the preparation of Pigment Yellow 12, a diarylide pigment. [15]

PigmentYellow12corrected.png

The resulting azo compounds are often useful dyes and in fact are called azo dyes. [13] The deep colors of the dyes reflects their extended conjugation. For example, the dye called aniline yellow is produced by mixing aniline and cold solution of diazonium salt and then shaking it vigorously. Aniline yellow is obtained as a yellow solid. [16] Similarly, a cold basic solution of Naphthalen-2-ol (beta-naphthol) give the intensely orange-red precipitate. [16] Methyl orange is an example of an azo dye that is used in the laboratory as a pH indicator.

Displacement of the N2 group

Arenediazonium cations undergo several reactions in which the N2 group is replaced by another group or ion. Some of the major ones are the following. [17] [18]

Biaryl coupling

A pair of diazonium cations can be coupled to give biaryls. This conversion is illustrated by the coupling of the diazonium salt derived from anthranilic acid to give diphenic acid ((C6H4CO2H)2). [19] In a related reaction, the same diazonium salt undergoes loss of N2 and CO2 to give benzyne. [20]

Replacement by halides

Sandmeyer reaction

Benzenediazonium chloride heated with cuprous chloride or cuprous bromide respectively dissolved in HCl or HBr yield chlorobenzene or bromobenzene, respectively.

[C6H5N2]+ + CuCl → C6H5Cl + N2 + Cu+

Gattermann reaction

In the Gattermann reaction, benzenediazonium chloride is warmed with copper powder and HCl or HBr to produce chlorobenzene and bromobenzene respectively. It is named after the German chemist Ludwig Gattermann. [21]

2 Cu + 2 [C6H5N2]+ → 2 Cu+ + (C6H5)2 + 2 N2 (initiation)
[C6H5N2]+ + HX → C6H5X + N2 + H+ (Cu+ catalysis)

Replacement by iodide

Arenediazonium cations react with potassium iodide to give the aryl iodide: [22]

[C6H5N2]+ + KI → C6H5I + K+ + N2

Replacement by fluoride

Fluorobenzene is produced by thermal decomposition of benzenediazonium tetrafluoroborate. The conversion is called the Balz–Schiemann reaction. [23]

[C6H5N2]+[BF4] → C6H5F + BF3 + N2

The traditional Balz–Schiemann reaction has been the subject of many motivations, e.g. using hexafluorophosphate(V) ([PF6]) and hexafluoroantimonate(V) ([SbF6]) in place of tetrafluoroborate ([BF4]). The diazotization can be effected with nitrosonium salts such as nitrosonium hexafluoroantimonate(V) [NO]+[SbF6]. [24]

Miscellaneous replacements

Replacement by hydrogen

Arenediazonium cations reduced by hypophosphorous acid, [25] ethanol, [26] sodium stannite [27] or alkaline sodium thiosulphate [28] gives benzene:

[C6H5N2]+Cl + H3PO2 + H2O → C6H6 + N2 + H3PO3 + HCl
[C6H5N2]+Cl + CH3CH2OH → C6H6 + N2 + CH3CHO + HCl
[C6H5N2]+Cl + NaOH + Na2SnO2 → C6H6 + N2 + Na2SnO3 + NaCl

An alternative way suggested by Baeyer & Pfitzinger is to replace the diazo group with H is: first to convert it into hydrazine by treating with SnCl2 then to oxidize it into hydrocarbon by boiling with cupric sulphate solution. [29]

Replacement by a hydroxyl group

Phenols are produced by heating aqueous solutions of arenediazonium salts: [30] [31] [32] [33]

[C6H5N2]+ + H2O → C6H5OH + N2 + H+

This reaction goes by the German name Phenolverkochung ("cooking down to yield phenols"). The phenol formed may react with the diazonium salt and hence the reaction is carried in the presence of an acid which suppresses this further reaction. [34] A Sandmeyer-type hydroxylation is also possible using Cu2O and Cu2+ in water.

Replacement by a nitro group

Nitrobenzene can be obtained by treating benzenediazonium fluoroborate with sodium nitrite in presence of copper. Alternatively, the diazotisation of the aniline can be conducted in presence of cuprous oxide, which generates cuprous nitrite in situ:

[C6H5N2]+ + CuNO2 → C6H5NO2 + N2 + Cu+

Replacement by a cyano group

The cyano group usually cannot be introduced by nucleophilic substitution of haloarenes, but such compounds can be easily prepared from diazonium salts. Illustrative is the preparation of benzonitrile using the reagent cuprous cyanide:

[C6H5N2]+ + CuCN → C6H5CN + Cu+ + N2

This reaction is a special type of Sandmeyer reaction.

Replacement by a trifluoromethyl group

Two research groups reported trifluoromethylations of diazonium salts in 2013. Goossen reported the preparation of a CuCF3 complex from CuSCN, TMSCF3, and Cs2CO3. In contrast, Fu reported the trifluoromethylation using Umemoto's reagent (S-trifluoromethyldibenzothiophenium tetrafluoroborate) and Cu powder (Gattermann-type conditions). They can be described by the following equation:

[C6H5N2]+ + [CuCF3] → C6H5CF3 + [Cu]+ + N2

The bracket indicates that other ligands on copper are likely present but are omitted.

Replacement by a thiol group

Diazonium salts can be converted to thiols in a two-step procedure. Treatment of benzenediazonium chloride with potassium ethylxanthate followed by hydrolysis of the intermediate xanthate ester gives thiophenol:

[C6H5N2]+ + C2H5OCS2 → C6H5SC(S)OC2H5 + N2
C6H5SC(S)OC2H5 + H2O → C6H5SH + HOC(S)OC2H5

Replacement by an aryl group

The aryl group can be coupled to another using arenediazonium salts. For example, treatment of benzenediazonium chloride with benzene (an aromatic compound) in the presence of sodium hydroxide gives diphenyl:

[C6H5N2]+Cl + C6H6 → (C6H5)2 + N2 + HCl

This reaction is known as the Gomberg–Bachmann reaction. A similar conversion is also achieved by treating benzenediazonium chloride with ethanol and copper powder.

Replacement by boronate ester group

A Bpin (pinacolatoboron) group, of use in Suzuki-Miyaura cross coupling reactions, can be installed by reaction of a diazonium salt with bis(pinacolato)diboron in the presence of benzoyl peroxide (2 mol %) as an initiator:. [35] Alternatively similar borylation can be achieved using transition metal carbonyl complexes including dimanganese decacarbonyl. [36]

[C6H5N2]+X + pinB−Bpin → C6H5Bpin + X−Bpin + N2

Replacement by formyl group

A formyl group, –CHO, can be introduced by treating the aryl diazonium salt with formaldoxime (H2C=NOH), followed by hydrolysis of the aryl aldoxime to give the aryl aldehyde. [37] This reaction is known as the Beech reaction. [38]

Other dediazotizations

Meerwein reaction

Benzenediazonium chloride reacts with compounds containing activated double bonds to produce phenylated products. The reaction is called the Meerwein arylation:

[C6H5N2]+Cl + ArCH=CH−COOH → ArCH=CH−C6H5 + N2 + CO2 + HCl

Metal complexes

In their reactions with metal complexes, diazonium cations behave similarly to NO+. For example, low-valent metal complexes add with diazonium salts. Illustrative complexes are [Fe(CO)2(PPh3)2(N2Ph)]+ and the chiral-at-metal complex Fe(CO)(NO)(PPh3)(N2Ph). [40]

Grafting reactions

In a potential application in nanotechnology, the diazonium salts 4-chlorobenzenediazonium tetrafluoroborate very efficiently functionalizes single wall nanotubes. [41] In order to exfoliate the nanotubes, they are mixed with an ionic liquid in a mortar and pestle. The diazonium salt is added together with potassium carbonate, and after grinding the mixture at room temperature the surface of the nanotubes are covered with chlorophenyl groups with an efficiency of 1 in 44 carbon atoms. These added subsituents prevent the tubes from forming intimate bundles due to large cohesive forces between them, which is a recurring problem in nanotube technology.

It is also possible to functionalize silicon wafers with diazonium salts forming an aryl monolayer. In one study, the silicon surface is washed with ammonium hydrogen fluoride leaving it covered with silicon–hydrogen bonds (hydride passivation). [42] The reaction of the surface with a solution of diazonium salt in acetonitrile for 2 hours in the dark is a spontaneous process through a free radical mechanism: [43]

Diazonium salt application silicon wafer DiazoniumSaltApplicationSiliconWafer.png
Diazonium salt application silicon wafer

So far grafting of diazonium salts on metals has been accomplished on iron, cobalt, nickel, platinum, palladium, zinc, copper and gold surfaces. [44] Also grafting to diamond surfaces has been reported. [45] One interesting question raised is the actual positioning on the aryl group on the surface. An in silico study [46] demonstrates that in the period 4 elements from titanium to copper the binding energy decreases from left to right because the number of d-electrons increases. The metals to the left of iron are positioned tilted towards or flat on the surface favoring metal to carbon pi bond formation and those on the right of iron are positioned in an upright position, favoring metal to carbon sigma bond formation. This also explains why diazonium salt grafting thus far has been possible with those metals to right of iron in the periodic table.

Reduction to a hydrazine group

Diazonium salts can be reduced with stannous chloride (SnCl2) to the corresponding hydrazine derivatives. This reaction is particularly useful in the Fischer indole synthesis of triptan compounds and indometacin. The use of sodium dithionite is an improvement over stannous chloride since it is a cheaper reducing agent with fewer environmental problems.

Biochemistry

Alkanediazonium ions, otherwise rarely encountered in organic chemistry, are implicated as the causative agents in the carcinogens. Specifically, nitrosamines are thought to undergo metabolic activation to produce alkanediazonium species.

Metabolic activation of the nitrosamine NDMA, involving its conversion to an alkylating agent. Ndma activ.svg
Metabolic activation of the nitrosamine NDMA, involving its conversion to an alkylating agent.

Safety

Solid diazonium halides are often dangerously explosive, and fatalities and injuries have been reported. [11]

The nature of the anions affects stability of the salt. Arenediazonium perchlorates, such as nitrobenzenediazonium perchlorate, have been used to initiate explosives.

See also

Related Research Articles

<span class="mw-page-title-main">Amine</span> Chemical compounds and groups containing nitrogen with a lone pair (:N)

In chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Important amines include amino acids, biogenic amines, trimethylamine, and aniline. Inorganic derivatives of ammonia are also called amines, such as monochloramine.

<span class="mw-page-title-main">Phenols</span> Chemical compounds in which hydroxyl group is attached directly to an aromatic ring

In organic chemistry, phenols, sometimes called phenolics, are a class of chemical compounds consisting of one or more hydroxyl groups (−OH) bonded directly to an aromatic hydrocarbon group. The simplest is phenol, C
6
H
5
OH
. Phenolic compounds are classified as simple phenols or polyphenols based on the number of phenol units in the molecule.

<span class="mw-page-title-main">Aniline</span> Organic compound (C₆H₅NH₂); simplest aromatic amine

Aniline is an organic compound with the formula C6H5NH2. Consisting of a phenyl group attached to an amino group, aniline is the simplest aromatic amine. It is an industrially significant commodity chemical, as well as a versatile starting material for fine chemical synthesis. Its main use is in the manufacture of precursors to polyurethane, dyes, and other industrial chemicals. Like most volatile amines, it has the odor of rotten fish. It ignites readily, burning with a smoky flame characteristic of aromatic compounds. It is toxic to humans.

<span class="mw-page-title-main">Nitrous acid</span> Chemical compound

Nitrous acid is a weak and monoprotic acid known only in solution, in the gas phase, and in the form of nitrite salts. It was discovered by Carl Wilhelm Scheele, who called it "phlogisticated acid of niter". Nitrous acid is used to make diazonium salts from amines. The resulting diazonium salts are reagents in azo coupling reactions to give azo dyes.

In organic chemistry, an aryl halide is an aromatic compound in which one or more hydrogen atoms, directly bonded to an aromatic ring are replaced by a halide. Haloarenes are different from haloalkanes because they exhibit many differences in methods of preparation and properties. The most important members are the aryl chlorides, but the class of compounds is so broad that there are many derivatives and applications.

<span class="mw-page-title-main">Azo compound</span> Organic compounds with a diazenyl group (–N=N–)

Azo compounds are organic compounds bearing the functional group diazenyl.

The Sandmeyer reaction is a chemical reaction used to synthesize aryl halides from aryl diazonium salts using copper salts as reagents or catalysts. It is an example of a radical-nucleophilic aromatic substitution. The Sandmeyer reaction provides a method through which one can perform unique transformations on benzene, such as halogenation, cyanation, trifluoromethylation, and hydroxylation.

The Ullmann reaction or Ullmann coupling, named after Fritz Ullmann, couples two aryl or alkyl groups with the help of copper. The reaction was first reported by Ullmann and his student Bielecki in 1901. It has been later shown that palladium and nickel can also be effectively used.

The Ullmann condensation or Ullmann-type reaction is the copper-promoted conversion of aryl halides to aryl ethers, aryl thioethers, aryl nitriles, and aryl amines. These reactions are examples of cross-coupling reactions.

<span class="mw-page-title-main">Aromatic sulfonation</span> Chemical reaction which replaces a hydrogen on an arene with sulfonic acid, –NH–SO3H

In organic chemistry, aromatic sulfonation is an organic reaction in which a hydrogen atom on an arene is replaced by a sulfonic acid functional group in an electrophilic aromatic substitution. Aryl sulfonic acids are used as detergents, dye, and drugs.

In organic chemistry, an azo coupling is an reaction between a diazonium compound and another aromatic compound that produces an azo compound. In this electrophilic aromatic substitution reaction, the aryldiazonium cation is the electrophile, and the activated carbon, serves as a nucleophile. Classical coupling agents are phenols and naphthols. Usually the diazonium reagent attacks at the para position of the coupling agent. When the para position is occupied, coupling occurs at a ortho position, albeit at a slower rate.

<span class="mw-page-title-main">Thiophenol</span> Chemical compound

Thiophenol is an organosulfur compound with the formula C6H5SH, sometimes abbreviated as PhSH. This foul-smelling colorless liquid is the simplest aromatic thiol. The chemical structures of thiophenol and its derivatives are analogous to phenols. An exception is the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring is replaced by a sulfur atom. The prefix thio- implies a sulfur-containing compound and when used before a root word name for a compound which would normally contain an oxygen atom, in the case of 'thiol' that the alcohol oxygen atom is replaced by a sulfur atom.

The Balz–Schiemann reaction is a chemical reaction in which a primary aromatic amine is transformed to an aryl fluoride via a diazonium tetrafluoroborate intermediate. This reaction is a traditional route to fluorobenzene and some related derivatives, including 4-fluorobenzoic acid.

The Gomberg–Bachmann reaction, named for the Russian-American chemist Moses Gomberg and the American chemist Werner Emmanuel Bachmann, is an aryl-aryl coupling reaction via a diazonium salt.

<span class="mw-page-title-main">Meerwein arylation</span> Organic reaction

The Meerwein arylation is an organic reaction involving the addition of an aryl diazonium salt (ArN2X) to an electron-poor alkene usually supported by a metal salt. The reaction product is an alkylated arene compound. The reaction is named after Hans Meerwein, one of its inventors who first published it in 1939.

<span class="mw-page-title-main">2-Nitroaniline</span> Chemical compound

2-Nitroaniline is an organic compound with the formula H2NC6H4NO2. It is a derivative of aniline, carrying a nitro functional group in position 2. It is mainly used as a precursor to o-phenylenediamine.

<span class="mw-page-title-main">2-Naphthol</span> Chemical compound

2-Naphthol, or β-naphthol, is a fluorescent colorless (or occasionally yellow) crystalline solid with the formula C10H7OH. It is an isomer of 1-naphthol, differing by the location of the hydroxyl group on the naphthalene ring. The naphthols are naphthalene homologues of phenol, but more reactive. Both isomers are soluble in simple alcohols, ethers, and chloroform. 2-Naphthol is a widely used intermediate for the production of dyes and other compounds.

<span class="mw-page-title-main">Benzenediazonium tetrafluoroborate</span> Organic compound containing an –N≡N+ function

Benzenediazonium tetrafluoroborate is an organic compound with the formula [C6H5N2]BF4. It is a salt of a diazonium cation and tetrafluoroborate. It exists as a colourless solid that is soluble in polar solvents. It is the parent member of the aryldiazonium compounds, which are widely used in organic chemistry.

In organic synthesis, cyanation is the attachment or substitution of a cyanide group on various substrates. Such transformations are high-value because they generate C-C bonds. Furthermore nitriles are versatile functional groups.

<span class="mw-page-title-main">Organic thiocyanates</span>

Organic thiocyanates are organic compounds containing the functional group RSCN. the organic group is attached to sulfur: R−S−C≡N has a S–C single bond and a C≡N triple bond.

References

  1. Cygler, Miroslaw; Przybylska, Maria; Elofson, Richard Macleod (1982). "The Crystal Structure of Benzenediazonium Tetrafluoroborate, C6H5N2+•BF41". Canadian Journal of Chemistry. 60 (22): 2852–2855. doi: 10.1139/v82-407 .
  2. D. Bravo-Díaz, Carlos (2010-10-15), "Diazohydroxides, Diazoethers and Related Species", in Rappoport, Zvi (ed.), PATai's Chemistry of Functional Groups, John Wiley & Sons, Ltd, doi:10.1002/9780470682531.pat0511, ISBN   9780470682531
  3. 1 2 裴, 坚. 基础有机化学[Basic Organic Chemistry] (4th ed.). pp. 868–869.
  4. Norman, R. O. C. (Richard Oswald Chandler) (2017). Principles of Organic Synthesis (3rd ed.). CRC Press. ISBN   9780203742068. OCLC   1032029494.
  5. Streitwieser, Andrew; Schaeffer, William D. (June 1957). "Stereochemistry of the Primary Carbon. VI. The Reaction of Optically Active 1-Aminobutane-1-d with Nitrous Acid. Mechanism of the Amine-Nitrous Acid Reaction1". Journal of the American Chemical Society. 79 (11): 2888–2893. doi:10.1021/ja01568a054.
  6. Friedman, Lester; Jurewicz, Anthony T.; Bayless, John H. (March 1969). "Influence of solvent on diazoalkane-alkanediazonium ion equilibriums in amine deaminations". Journal of the American Chemical Society. 91 (7): 1795–1799. doi:10.1021/ja01035a032.
  7. Carey, Francis A. (2007). Advanced organic chemistry. Sundberg, Richard J. (5th ed.). New York: Springer. ISBN   9780387448978. OCLC   154040953.
  8. Fei, Na; Sauter, Basilius; Gillingham, Dennis (2016). "The pKa of Brønsted acids controls their reactivity with diazo compounds". Chemical Communications. 52 (47): 7501–7504. doi: 10.1039/C6CC03561B . PMID   27212133.
  9. Filimonov, Victor D.; Trusova, Marina; Postnikov, Pavel; Krasnokutskaya, Elena A.; Lee, Young Min; Hwang, Ho Yun; Kim, Hyunuk; Chi, Ki-Whan (2008-09-18). "Unusually Stable, Versatile, and Pure Arenediazonium Tosylates: Their Preparation, Structures, and Synthetic Applicability". Organic Letters. 10 (18): 3961–3964. doi:10.1021/ol8013528. ISSN   1523-7060. PMID   18722457.
  10. Mihelač, M.; Siljanovska, A.; Košmrlj, J. (2021). "A convenient approach to arenediazonium tosylates". Dyes Pigm. 184: 108726. doi: 10.1016/j.dyepig.2020.108726 .
  11. 1 2 "UK CRHF Incident Report – Supersaturated Diazonium salt causes Fatality". UK Chemical Reaction Hazards Forum. Archived from the original on 6 October 2018. Retrieved 13 May 2010.
  12. R. V. Hoffman (1981). "m-Trifluoromethylbenzenesulfonyl Chloride". Org. Synth. 60: 121. doi:10.15227/orgsyn.060.0121.
  13. 1 2 Klaus Hunger, Peter Mischke, Wolfgang Rieper, et al. "Azo Dyes" in Ullmann’s Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a03_245.
  14. Chemistry of the Diazonium and Diazo Groups: Part 1. S. Patai, Ed. 1978 Wiley-Blackwell. ISBN   0-471-99492-8. Chemistry of the Diazonium and Diazo Groups: Part 2. S. Patai, Ed. 1978 Wiley-Blackwell. ISBN   0-471-99493-6.
  15. K. Hunger. W. Herbst "Pigments, Organic" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012. doi : 10.1002/14356007.a20_371
  16. 1 2 Clark, Jim. "chemguide" . Retrieved 28 September 2011.
  17. March, J. “Advanced Organic Chemistry” 4th Ed. J. Wiley and Sons, 1992: New York. ISBN   978-0-471-60180-7.
  18. Marye Anne Fox; James K. Whitesell (2004). Organic Chemistry (3, illustrated ed.). Jones & Bartlett Learning. pp. 535–538. ISBN   978-0-7637-2197-8.
  19. Atkinson, E. R.; Lawler, H. J. (1927). "Diphenic Acid". Org. Synth. 7: 30. doi:10.15227/orgsyn.007.0030.
  20. Logullo, F. M.; Seitz, A. H.; Friedman, L. (1968). "Benzenediazonium-2-carboxy- and Biphenylene". Org. Synth. 48: 12. doi:10.15227/orgsyn.048.0012.
  21. L. Gattermann (1894). "Untersuchungen über Diazoverbindungen". Berichte der Deutschen Chemischen Gesellschaft. 23 (1): 1218–1228. doi:10.1002/cber.189002301199.
  22. Lucas, H. J.; Kennedy, E. R. (1939). "Iodobenzene". Org. Synth. 19: 55. doi:10.15227/orgsyn.019.0055.
  23. Flood, D. T. (1933). "Fluorobenzene". Org. Synth. 13: 46. doi:10.15227/orgsyn.013.0046..
  24. Furuya, Takeru; Klein, Johannes E. M. N.; Ritter, Tobias (2010). "C–F Bond Formation for the Synthesis of Aryl Fluorides". Synthesis. 2010 (11): 1804–1821. doi:10.1055/s-0029-1218742. PMC   2953275 . PMID   20953341.
  25. Reinhard Bruckner, ed. Michael Harmata; Organic Mechanisms Reactions, Stereochemistry and Synthesis 3rd Ed, p.246, ISBN   978-3-8274-1579-0
  26. DeTarr, D.F.; Kosuge, T. (1958). "Mechanisms of Diazonium Salt Reactions. VI. The Reactions of Diazonium Salts with Alcohols under Acidic Conditions; Evidence for Hydride Transfer1". Journal of the American Chemical Society. 80 (22): 6072–6077. doi:10.1021/ja01555a044.
  27. Friedlander, Ber., 1889, 587, 22
  28. Grandmougin, Ber., 1907, 40, 858
  29. Baeyer & Pfitzinger, Ber., 1885, 18, 90, 786
  30. H. E. Ungnade, E. F. Orwoll (1943). "3-Bromo-4-hydroxytoluene". Org. Synth. 23: 11. doi:10.15227/orgsyn.023.0011.
  31. Kazem-Rostami, Masoud (2017). "Facile Preparation of Phenol". Synlett. 28 (13): 1641–1645. doi:10.1055/s-0036-1588180. S2CID   99294625.
  32. Carey, F. A.; Sundberg, R. J. (2007). Advanced Organic Chemistry . Vol. B, Chapter 11: Springer. pp.  1028.{{cite book}}: CS1 maint: location (link)
  33. Khazaei, Ardeshir; Kazem-Rostami, Masoud; Zare, Abdolkarim; Moosavi-Zare, Ahmad Reza; Sadeghpour, Mahdieh; Afkhami, Abbas (2013). "Synthesis, characterization, and application of a triazene-based polysulfone as a dye adsorbent". Journal of Applied Polymer Science. 129 (6): 3439–3446. doi:10.1002/app.39069.
  34. R. H. F. Manske (1928). "m-Nitrophenol". Org. Synth. 8: 80. doi:10.15227/orgsyn.008.0080.
  35. Wu, Jie; Gao, Yueqiu; Qiu, Guanyinsheng; He, Linman (2014-08-20). "Removal of amino groups from anilines through diazonium salt-based reactions". Organic & Biomolecular Chemistry. 12 (36): 6965–6971. doi:10.1039/C4OB01286K. ISSN   1477-0539. PMID   25093920.
  36. Fairlamb, Ian; Firth, James D.; Hammarback, L. Anders; Burden, Thomas J.; Eastwood, Jonathan B.; Donald, James R.; Horbaczewskyj, Chris S.; McRobie, Matthew T.; Tramaseur, Adam; Clark, Ian P.; Towrie, Michael; Robinson, Alan; Krieger, Jean-Philippe; Lynam, Jason M. (2020). "Light‐ and Manganese‐Initiated Borylation of Aryl Diazonium Salts: Mechanistic Insight on the Ultrafast Time‐Scale Revealed by Time‐Resolved Spectroscopic Analysis". Chemistry – A European Journal. 27 (12): 3979–3985. doi:10.1002/chem.202004568. PMID   33135818. S2CID   226232322.
  37. "Organic Syntheses Procedure". 2-bromo-4-methylbenzaldehyde. Archived from the original on 2013-12-20. Retrieved 2021-05-04.
  38. Beech, W. F. (1954-01-01). "Preparation of aromatic aldehydes and ketones from diazonium salts". Journal of the Chemical Society (Resumed): 1297–1302. doi:10.1039/JR9540001297. ISSN   0368-1769.
  39. Pinacho Crisóstomo Fernando (2014). "Ascorbic Acid as an Initiator for the Direct C-H Arylation of (Hetero)arenes with Anilines Nitrosated In Situ". Angewandte Chemie International Edition. 53 (8): 2181–2185. doi:10.1002/anie.201309761. PMID   24453180.
  40. Sutton, D (1993). "Organometallic Diazo Compounds". Chem. Rev. 93 (3): 905–1022. doi:10.1021/cr00019a008.
  41. Price, B. Katherine (2005). "Green Chemical Functionalization of Single-Walled Carbon Nanotubes in Ionic Liquids". Journal of the American Chemical Society. 127 (42): 14867–14870. doi:10.1021/ja053998c. PMID   16231941.
  42. Michael P. Stewart; Francisco Maya; Dmitry V. Kosynkin; et al. (2004). "Direct Covalent Grafting of Conjugated Molecules onto Si, GaAs, and Pd Surfaces from Arenediazonium Salts". J. Am. Chem. Soc. 126 (1): 370–8. doi:10.1021/ja0383120. PMID   14709104.
  43. Reaction sequence: silicon surface reaction with ammonium hydrogen fluoride creates hydride layer. An electron is transferred from the silicon surface to the diazonium salt in an open circuit potential reduction leaving a silicon radical cation and a diazonium radical. In the next step a proton and a nitrogen molecule are expelled and the two radical residues recombine creating a surface silicon to carbon bond.
  44. Bélanger, Daniel; Pinson, Jean (2011). "Electrografting: a powerful method for surface modification". Chemical Society Reviews. 40 (7): 3995–4048. doi:10.1039/c0cs00149j. ISSN   0306-0012. PMID   21503288.
  45. S.Q. Lud; M. Steenackers; P. Bruno; et al. (2006). "Chemical Grafting of Biphenyl Self-Assembled Monolayers on Ultrananocrystalline Diamond". J. Am. Chem. Soc. 128 (51): 16884–91. doi:10.1021/ja0657049. PMID   17177439.
  46. De-en Jiang; Bobby G. Sumpter; Sheng Dai (2006). "Structure and Bonding between an Aryl Group and Metal Surfaces". J. Am. Chem. Soc. 128 (18): 6030–1. doi:10.1021/ja061439f. PMID   16669660. S2CID   41590197.
  47. Tricker, A.R.; Preussmann, R. (1991). "Carcinogenic N-Nitrosamines in the Diet: Occurrence, Formation, Mechanisms and Carcinogenic Potential". Mutation Research/Genetic Toxicology. 259 (3–4): 277–289. doi:10.1016/0165-1218(91)90123-4. PMID   2017213.