Bromobenzene

Last updated
Bromobenzene
Structure of bromobenzene Brombenzol - Bromobenzene.svg
Structure of bromobenzene
Space-filling model of bromobenzene Bromobenzene-3D-vdW.png
Space-filling model of bromobenzene
Names
Preferred IUPAC name
Bromobenzene [1]
Other names
Phenyl Bromide
Bromobenzol
Monobromobenzene
Identifiers
3D model (JSmol)
1236661
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.295 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-623-8
KEGG
PubChem CID
RTECS number
  • CY9000000
UNII
UN number 2514
  • InChI=1S/C6H5Br/c7-6-4-2-1-3-5-6/h1-5H Yes check.svgY
    Key: QARVLSVVCXYDNA-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C6H5Br/c7-6-4-2-1-3-5-6/h1-5H
    Key: QARVLSVVCXYDNA-UHFFFAOYAB
  • c1ccc(cc1)Br
Properties
C6H5Br
Molar mass 157.010 g·mol−1
AppearanceColourless liquid
Odor Pleasant aromatic odor
Density 1.495 g cm−3, liquid
Melting point −30.8 °C (−23.4 °F; 242.3 K)
Boiling point 156 °C (313 °F; 429 K)
0.041 g/100 mL
Solubility soluble in diethyl ether, alcohol, CCl4
miscible in chloroform, benzene, petroleum ether
Vapor pressure 4.18 mm Hg
-78.92·10−6 cm3/mol
1.5602
Viscosity
  • 1.080 mPa·s at 25 °C [2]
  • 1.124 mPa·s at 20 °C
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Warning
H226, H315, H411
P210, P233, P240, P241, P242, P243, P264, P273, P280, P302+P352, P303+P361+P353, P321, P332+P313, P362, P370+P378, P391, P403+P235, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
2
0
Flash point 51 °C (124 °F; 324 K)
565 °C (1,049 °F; 838 K)
Related compounds
Related halobenzenes
Fluorobenzene
Chlorobenzene
Iodobenzene
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Bromobenzene is an aryl bromide and the simplest of the bromobenzenes, consisting of a benzene ring substituted with one bromine atom. Its chemical formula is C6H5Br. It is a colourless liquid although older samples can appear yellow. It is a reagent in organic synthesis.

Contents

Synthesis and reactions

Bromobenzene is prepared by the action of bromine on benzene in the presence of Lewis acid catalysts such as aluminium chloride or ferric bromide. [3]

Bromobenzene is used to introduce a phenyl group into other compounds. One method involves its conversion to the Grignard reagent, phenylmagnesium bromide. This reagent can be used, e.g. in the reaction with carbon dioxide to prepare benzoic acid. [4] Other methods involve palladium-catalyzed coupling reactions, such as the Suzuki reaction. Bromobenzene is used as a precursor in the manufacture of phencyclidine.

Toxicity

Animal tests indicate low toxicity. [5] Little is known about chronic effects. [6] [7]

For liver toxicity, the 3,4-epoxide is a proposed intermediate. [8]

Related Research Articles

<span class="mw-page-title-main">Bromine</span> Chemical element, symbol Br and atomic number 35

Bromine is a chemical element; it has symbol Br and atomic number 35. It is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig and Antoine Jérôme Balard, its name was derived from the Ancient Greek βρῶμος (bromos) meaning "stench", referring to its sharp and pungent smell.

<span class="mw-page-title-main">Toluene</span> Chemical compound

Toluene, also known as toluol, is a substituted aromatic hydrocarbon with the chemical formula C6H5CH3, often abbreviated as PhCH3, where Ph stands for phenyl group. It is a colorless, water-insoluble liquid with the odor associated with paint thinners. It is a mono-substituted benzene derivative, consisting of a methyl group (CH3) attached to a phenyl group by a single bond. As such, its systematic IUPAC name is methylbenzene. Toluene is predominantly used as an industrial feedstock and a solvent.

Thiophene is a heterocyclic compound with the formula C4H4S. Consisting of a planar five-membered ring, it is aromatic as indicated by its extensive substitution reactions. It is a colorless liquid with a benzene-like odor. In most of its reactions, it resembles benzene. Compounds analogous to thiophene include furan (C4H4O), selenophene (C4H4Se) and pyrrole (C4H4NH), which each vary by the heteroatom in the ring.

<span class="mw-page-title-main">Phenanthrene</span> Polycyclic aromatic hydrocarbon composed of three fused benzene rings

Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) with formula C14H10, consisting of three fused benzene rings. It is a colorless, crystal-like solid, but can also appear yellow. Phenanthrene is used to make dyes, plastics, pesticides, explosives, and drugs. It has also been used to make bile acids, cholesterol and steroids.

In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens. Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.

In organic chemistry, an aryl halide is an aromatic compound in which one or more hydrogen atoms, directly bonded to an aromatic ring are replaced by a halide. The haloarene are different from haloalkanes because they exhibit many differences in methods of preparation and properties. The most important members are the aryl chlorides, but the class of compounds is so broad that there are many derivatives and applications.

<span class="mw-page-title-main">Hydrogen bromide</span> Chemical compound

Hydrogen bromide is the inorganic compound with the formula HBr. It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temperature. Aqueous solutions that are 47.6% HBr by mass form a constant-boiling azeotrope mixture that boils at 124.3 °C (255.7 °F). Boiling less concentrated solutions releases H2O until the constant-boiling mixture composition is reached.

In chemistry, a trimer is a molecule or polyatomic anion formed by combination or association of three molecules or ions of the same substance. In technical jargon, a trimer is a kind of oligomer derived from three identical precursors often in competition with polymerization.

In organic chemistry, an electrophilic aromatic halogenation is a type of electrophilic aromatic substitution. This organic reaction is typical of aromatic compounds and a very useful method for adding substituents to an aromatic system.

The Sandmeyer reaction is a chemical reaction used to synthesize aryl halides from aryl diazonium salts using copper salts as reagents or catalysts. It is an example of a radical-nucleophilic aromatic substitution. The Sandmeyer reaction provides a method through which one can perform unique transformations on benzene, such as halogenation, cyanation, trifluoromethylation, and hydroxylation.

Benzyl chloride, or α-chlorotoluene, is an organic compound with the formula C6H5CH2Cl. This colorless liquid is a reactive organochlorine compound that is a widely used chemical building block.

Bromine compounds are compounds containing the element bromine (Br). These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.

<span class="mw-page-title-main">Boronic acid</span> Organic compound of the form R–B(OH)2

A boronic acid is an organic compound related to boric acid in which one of the three hydroxyl groups is replaced by an alkyl or aryl group. As a compound containing a carbon–boron bond, members of this class thus belong to the larger class of organoboranes.

In organic synthesis, cyanation is the attachment or substitution of a cyanide group on various substrates. Such transformations are high-value because they generate C-C bonds. Furthermore nitriles are versatile functional groups.

Organobromine chemistry is the study of the synthesis and properties of organobromine compounds, also called organobromides, which are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane.

<span class="mw-page-title-main">2,3-Dichloro-5,6-dicyano-1,4-benzoquinone</span> Chemical compound

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (or DDQ) is the chemical reagent with formula C6Cl2(CN)2O2. This oxidant is useful for the dehydrogenation of alcohols, phenols, and steroid ketones. DDQ decomposes in water, but is stable in aqueous mineral acid.

<span class="mw-page-title-main">Propargyl bromide</span> Chemical compound

Propargyl bromide, also known as 3-bromo-prop-1-yne, is an organic compound with the chemical formula HC≡CCH2Br. A colorless liquid, it is a halogenated organic compound consisting of propyne with a bromine substituent on the methyl group. It has a lachrymatory effect, like related compounds. The compound is used as a reagent in organic synthesis.

<span class="mw-page-title-main">Hexabromobenzene</span> Chemical compound

Hexabromobenzene is an aryl bromide and a six-substituted bromobenzene in which all six positions of the central benzene ring are bonded to a bromine atom.

<span class="mw-page-title-main">1-Bromo-4-fluorobenzene</span> Chemical compound

4-Fluorobromobenzene is a mixed aryl halide (aryl fluoride and aryl bromide) with the formula C6H4BrF. It is a derivative of benzene, with a bromine atom bonded para to a fluorine atom. It has uses as a precursor to some pharmaceuticals, as an agrochemical intermediate, and in organic synthesis. It is a colorless liquid of low acute toxicity.

<span class="mw-page-title-main">Pentaphenylantimony</span> Chemical compound

Pentaphenylantimony is an organoantimony compound containing five phenyl groups attached to one antimony atom. It has formula Sb(C6H5)5 (or SbPh5).

References

  1. Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. pp. 10, 31. doi:10.1039/9781849733069-00001. ISBN   978-0-85404-182-4.
  2. Nayak, Jyoti N.; Aralaguppi, Mrityunjaya I.; Aminabhavi, Tejraj M. (2003). "Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Ethyl Chloroacetate + Cyclohexanone, + Chlorobenzene, + Bromobenzene, or + Benzyl Alcohol at (298.15, 303.15, and 308.15) K". Journal of Chemical & Engineering Data. 48 (3): 628–631. doi:10.1021/je0201828. ISSN   0021-9568.
  3. "Preparation of bromobenzene and iodobenzene". Journal of the Chemical Society, Abstracts. 38: 316. 1880. doi:10.1039/CA8803800307.
  4. G. S. Hiers (1927). "Triphenylstibine". Org. Synth. 7: 80. doi:10.15227/orgsyn.007.0080.
  5. e.V., Deutsche Gesetzliche Unfallversicherung. "IFA - Databases on hazardous substance (GESTIS): GESTIS database on hazardous substances". www.dguv.de. Retrieved 2018-03-29.
  6. Szymańska, J. A.; Piotrowski, J. K. (November 2000). "Hepatotoxicity of monobromobenzene and hexabromobenzene: effects of repeated dosage in rats". Chemosphere. 41 (10): 1689–1696. Bibcode:2000Chmsp..41.1689S. doi:10.1016/s0045-6535(00)00064-3. ISSN   0045-6535. PMID   11057697.
  7. National Research Council (1977). Drinking Water and Health: Volume 1 . pp.  693. doi:10.17226/1780. ISBN   9780309026192. PMID   25121315.
  8. "TOXICOLOGICAL REVIEW OF BROMOBENZENE" (PDF). Integrated Risk Information System. U.S. Environmental Protection Agency.