Ethenolysis

Last updated

In organic chemistry, ethenolysis is a chemical process in which internal olefins are degraded using ethylene (H2C=CH2) as the reagent. The reaction is an example of cross metathesis. The utility of the reaction is driven by the low cost of ethylene as a reagent and its selectivity. It produces compounds with terminal alkene functional groups (α-olefins), which are more amenable to other reactions such as polymerization and hydroformylation.

The general reaction equation is:

Ethenolysis is a form of methylenation, i.e., the installation of methylene (−CH2) groups.

Applications

Using ethenolysis, higher molecular weight internal alkenes can be converted to more valuable terminal alkenes. The Shell higher olefin process (SHOP process) uses ethenolysis on an industrial scale. The SHOP α-olefin mixtures are separated by distillation, the higher molecular weight fractions are isomerized by alkaline alumina catalysts in the liquid phase. The resulting internal olefins are reacted with ethylene to regenerate α-olefins. The large excess of ethylene moves the reaction equilibrium to the terminal α-olefins. Catalysts are often prepared from Rhenium(VII) oxide (Re2O7) supported on alumina. [1]

In one application, neohexene, a precursor to perfumes, is prepared by ethenolysis of diisobutene: [2]

α,ω-Dienes, i.e., diolefins of the formula (CH2)n(CH=CH2)2, are prepared industrially by ethenolysis of cyclic alkenes. For example, 1,5-hexadiene, a useful crosslinking agent and synthetic intermediate, is produced from 1,5-cyclooctadiene:

The catalyst is derived from rhenium(VII) oxide supported on alumina. [2] 1,9-Decadiene, a related species, is produced similarly from cyclooctene.

In an application directed at using renewable feedstocks, [3] methyl oleate, derived from natural seed oils, can be converted to 1-decene and methyl 9-decenoate: [4] [5]

Related Research Articles

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.

<span class="mw-page-title-main">Alkyne</span> Hydrocarbon compound containing one or more C≡C bonds

In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula CnH2n−2. Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to C2H2, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic.

A Ziegler–Natta catalyst, named after Karl Ziegler and Giulio Natta, is a catalyst used in the synthesis of polymers of 1-alkenes (alpha-olefins). Two broad classes of Ziegler–Natta catalysts are employed, distinguished by their solubility:

In chemistry, isomerization or isomerisation is the process in which a molecule, polyatomic ion or molecular fragment is transformed into an isomer with a different chemical structure. Enolization is an example of isomerization, as is tautomerization. When the isomerization occurs intramolecularly it may be called a rearrangement reaction.

<span class="mw-page-title-main">Unsaturated hydrocarbon</span> Hydrocarbon with double or triple covalent bonds between adjacent carbon atoms

Unsaturated hydrocarbons are hydrocarbons that have double or triple bonds between adjacent carbon atoms. The term "unsaturated" means more hydrogen atoms may be added to the hydrocarbon to make it saturated. Unsaturated hydrocarbons undergo a variety of reactions involving the unsaturated bonds.

Propylene, also known as propene, is an unsaturated organic compound with the chemical formula CH3CH=CH2. It has one double bond, and is the second simplest member of the alkene class of hydrocarbons. It is a colorless gas with a faint petroleum-like odor.

<span class="mw-page-title-main">Isobutylene</span> Unsaturated hydrocarbon compound (H2C=C(CH3)2)

Isobutylene is a hydrocarbon with the chemical formula (CH3)2C=CH2. It is a four-carbon branched alkene (olefin), one of the four isomers of butylene. It is a colorless flammable gas, and is of considerable industrial value.

In organic chemistry, a rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. Often a substituent moves from one atom to another atom in the same molecule, hence these reactions are usually intramolecular. In the example below, the substituent R moves from carbon atom 1 to carbon atom 2:

<span class="mw-page-title-main">Olefin metathesis</span>

Olefin metathesis is an organic reaction that entails the redistribution of fragments of alkenes (olefins) by the scission and regeneration of carbon-carbon double bonds. Because of the relative simplicity of olefin metathesis, it often creates fewer undesired by-products and hazardous wastes than alternative organic reactions. For their elucidation of the reaction mechanism and their discovery of a variety of highly active catalysts, Yves Chauvin, Robert H. Grubbs, and Richard R. Schrock were collectively awarded the 2005 Nobel Prize in Chemistry.

<span class="mw-page-title-main">Alpha-olefin</span> Hydrocarbon compounds with a C=C bond at the alpha carbon

In organic chemistry, alpha-olefins are a family of organic compounds which are alkenes with a chemical formula CxH2x, distinguished by having a double bond at the primary, alpha (α), or 1- position. This location of a double bond enhances the reactivity of the compound and makes it useful for a number of applications.

Pelargonic acid, also called nonanoic acid, is an organic compound with structural formula CH3(CH2)7CO2H. It is a nine-carbon fatty acid. Nonanoic acid is a colorless oily liquid with an unpleasant, rancid odor. It is nearly insoluble in water, but very soluble in organic solvents. The esters and salts of pelargonic acid are called pelargonates or nonanoates.

The Shell higher olefin process (SHOP) is a chemical process for the production of linear alpha olefins via ethylene oligomerization and olefin metathesis invented and exploited by Royal Dutch Shell. The olefin products are converted to fatty aldehydes and then to fatty alcohols, which are precursors plasticizers and detergents. The annual global production of olefines through this method is over one million tonnes.

In chemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

Decene is an organic compound with the chemical formula C10H20. Decene contains a chain of ten carbon atoms with one double bond, making it an alkene. There are many isomers of decene depending on the position and geometry of the double bond. Dec-1-ene is the only isomer of industrial importance. As an alpha olefin, it is used as a comonomer in copolymers and is an intermediate in the production of epoxides, amines, oxo alcohols, synthetic lubricants, synthetic fatty acids and alkylated aromatics.

<span class="mw-page-title-main">Methylrhenium trioxide</span> Chemical compound

Methylrhenium trioxide, also known as methyltrioxorhenium(VII), is an organometallic compound with the formula CH3−ReO3. It is a volatile, colourless solid that has been used as a catalyst in some laboratory experiments. In this compound, rhenium has a tetrahedral coordination geometry with one methyl and three oxo ligands. The oxidation state of rhenium is +7.

<span class="mw-page-title-main">Organorhodium chemistry</span> Field of study

Organorhodium chemistry is the chemistry of organometallic compounds containing a rhodium-carbon chemical bond, and the study of rhodium and rhodium compounds as catalysts in organic reactions.

<span class="mw-page-title-main">Neohexene</span> Hydrocarbon compound ((CH3)3CCH=CH2)

Neohexene is the hydrocarbon compound with the chemical formula (CH3)3CCH=CH2. It is a colorless liquid, with properties similar to other hexenes. It is a precursor to commercial synthetic musk perfumes.

In organic chemistry, hydrovinylation is the formal insertion of an alkene into the C-H bond of ethylene. The more general reaction, hydroalkenylation, is the formal insertion of an alkene into the C-H bond of any terminal alkene. The reaction is catalyzed by metal complexes. A representative reaction is the conversion of styrene and ethylene to 3-phenybutene:

Olefin Conversion Technology, also called the Phillips Triolefin Process, is the industrial process that interconverts propylene with ethylene and 2-butenes. The process is also called the ethylene to propylene (ETP) process. In ETP, ethylene is dimerized to 1-butene, which is isomerized to 2-butenes. The 2-butenes are then subjected to metathesis with ethylene.

In organic chemistry, methylenation is a chemical reaction that inserts a methylene group into a chemical compound:

References

  1. K. Weissermel, H. J. Arpe: Industrial Organic Chemistry: Important Raw Materials and Intermediates. Wiley-VCH Verlag 2003, ISBN   3-527-30578-5
  2. 1 2 Lionel Delaude; Alfred F. Noels (2005). "Metathesis". Kirk-Othmer Encyclopedia of Chemical Technology. Weinheim: Wiley-VCH. doi:10.1002/0471238961.metanoel.a01. ISBN   0-471-23896-1.
  3. Metzger, J. O.; Bornscheuer, U. (2006). "Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification". Applied Microbiology and Biotechnology. 71 (1): 13–22. doi:10.1007/s00253-006-0335-4. PMID   16604360. S2CID   28601501.
  4. Marinescu, Smaranda C.; Schrock, Richard R.; Müller, Peter; Hoveyda, Amir H. (2009). "Ethenolysis Reactions Catalyzed by Imido Alkylidene Monoaryloxide Monopyrrolide (MAP) Complexes of Molybdenum". J. Am. Chem. Soc. 131 (31): 10840–10841. doi:10.1021/ja904786y. PMID   19618951.
  5. Schrodi, Yann; Ung, Thay; Vargas, Angel; Mkrtumyan, Garik; Lee, Choon Woo; Champagne, Timothy M.; Pederson, Richard L.; Hong, Soon Hyeok (2008). "Ruthenium Olefin Metathesis Catalysts for the Ethenolysis of Renewable Feedstocks". CLEAN - Soil, Air, Water. 36 (8): 669–673. doi:10.1002/clen.200800088.