Methylenation

Last updated

In organic chemistry, methylenation is a chemical reaction that inserts a methylene (−CH2) group into a chemical compound:

Contents

In a related sense, it also describes a process in which a divalent group of a starting material is removed and replaced with a terminal CH2 group:

Methylenation in this context is also known as methenylation. Most commonly, E is an oxygen atom, so that the reaction results in terminal alkenes from aldehydes and ketones, or more rarely, enol ethers from esters or enamines from amides.

Methods

Methylene Insertion into Alkanes

Singlet methylene (1[:CH2]), produced from photolysis of diazomethane under ultraviolet irradiation, [1] methylenates hydrocarbons. Arenes and olefins undergo methylenation to give cyclopropanated products. In the case of arenes, the cyclopropanation product undergoes further electrocyclic ring opening to give cycloheptatriene products (Buchner ring expansion). [2] Alkenes undergo both C=C methylenation and C–H methylenation insertion to give a mixture of cyclopropanation and homologation products.

Reflecting the exceptionally high reactivity of singlet methylene, normally unreactive alkanes undergo methylenation to give homologation products, even at –75 °C. [3]

Photolysis of a solution of diazomethane in n-pentane gives a mixture of hexanes and higher homologues. At –75 °C, the product ratio is 48:35:17 mixture of n-hexane, 2-methylpentane, and 3-methylpentane. The ratio is remarkably close to the statistical product ratio of 6:4:2 (~50:33:17) based on the number of available C–H bonds at each position that could undergo methylene insertion. As a result, Doering and coworkers concluded:

Methylene must be classed as the most indiscriminate reagent known in organic chemistry.

Methylene-for-oxo reactions

A common method for methylenation involves the Wittig reaction using methylenetriphenylphosphorane with an aldehyde (Ph = phenyl, C6H5): [4]

A related reaction can be accomplished with Tebbe's reagent, which is sufficiently versatile to allow methylenation of esters: [5]

Other less well-defined titanium reagents, e.g., Lombardo's reagent, effect similar transformations. [6] [7]

LombardoReagent.png

Carbanions derived from methylsulfones have also been employed, equivalently to the Wittig reaction. [8]

Methylenation adjacent to carbonyl groups

Ketones and esters can be methylenated at the α position to give α,β-unsaturated carbonyl products containing an additional terminal CH2 group in a three-step process known as the Eschenmoser methylenation. [9] An enolate is generated by deprotonation of the α-C–H bond using a hindered lithium amide (LiNR2) base (e.g., LDA, LHMDS). Subsequently, the enolate is reacted with Eschenmoser's salt ([Me2N=CH2]+I) to give a β-dimethylamino carbonyl compound (Mannich base). The Mannich base is then subjected to methylation or N-oxidation to give a trimethylammonium salt or amine N-oxide, which is then subjected to Hofmann elimination or Cope elimination, respectively to give the α-methylene carbonyl compound. If the Hofmann elimination is used, the process can be represented as follows:

Other approaches

Ethenolysis is a method for methylenation of internal alkene as illustrated by the following example:

In principle, the addition of CH2 across a C=C double bond could be classified as a methylenation, but such transformations are commonly described as cyclopropanations.

Related Research Articles

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.

<span class="mw-page-title-main">Alkyne</span> Hydrocarbon compound containing one or more C≡C bonds

In organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula CnH2n−2. Alkynes are traditionally known as acetylenes, although the name acetylene also refers specifically to C2H2, known formally as ethyne using IUPAC nomenclature. Like other hydrocarbons, alkynes are generally hydrophobic.

<span class="mw-page-title-main">Dicarbonyl</span> Molecule containing two adjacent C=O groups

In organic chemistry, a dicarbonyl is a molecule containing two carbonyl groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own. These compounds can have symmetrical or unsymmetrical substituents on each carbonyl, and may also be functionally symmetrical or unsymmetrical.

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol is also called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified.

In organic chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The general formula is R−:C−R' or R=C: where the R represents substituents or hydrogen atoms.

A transition metal carbene complex is an organometallic compound featuring a divalent organic ligand. The divalent organic ligand coordinated to the metal center is called a carbene. Carbene complexes for almost all transition metals have been reported. Many methods for synthesizing them and reactions utilizing them have been reported. The term carbene ligand is a formalism since many are not derived from carbenes and almost none exhibit the reactivity characteristic of carbenes. Described often as M=CR2, they represent a class of organic ligands intermediate between alkyls (−CR3) and carbynes (≡CR). They feature in some catalytic reactions, especially alkene metathesis, and are of value in the preparation of some fine chemicals.

<span class="mw-page-title-main">Tebbe's reagent</span> Chemical compound

Tebbe's reagent is the organometallic compound with the formula (C5H5)2TiCH2ClAl(CH3)2. It is used in the methylidenation of carbonyl compounds, that is it converts organic compounds containing the R2C=O group into the related R2C=CH2 derivative. It is a red solid that is pyrophoric in the air, and thus is typically handled with air-free techniques. It was originally synthesized by Fred Tebbe at DuPont Central Research.

<span class="mw-page-title-main">Petasis reagent</span> Chemical compound

The Petasis reagent, named after Nicos A. Petasis, is an organotitanium compound with the formula Cp2Ti(CH3)2. It is an orange-colored solid.

<span class="mw-page-title-main">Grignard reagent</span> Organometallic compounds used in organic synthesis

Grignard reagents or Grignard compounds are chemical compounds with the general formula R−Mg−X, where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride Cl−Mg−CH3 and phenylmagnesium bromide (C6H5)−Mg−Br. They are a subclass of the organomagnesium compounds.

<span class="mw-page-title-main">Cyclopropanation</span> Chemical process which generates cyclopropane rings

In organic chemistry, cyclopropanation refers to any chemical process which generates cyclopropane rings. It is an important process in modern chemistry as many useful compounds bear this motif; for example pyrethroid insecticides and a number of quinolone antibiotics. However, the high ring strain present in cyclopropanes makes them challenging to produce and generally requires the use of highly reactive species, such as carbenes, ylids and carbanions. Many of the reactions proceed in a cheletropic manner.

<span class="mw-page-title-main">Organotitanium chemistry</span>

Organotitanium chemistry is the science of organotitanium compounds describing their physical properties, synthesis, and reactions. Organotitanium compounds in organometallic chemistry contain carbon-titanium chemical bonds. They are reagents in organic chemistry and are involved in major industrial processes.

The Kulinkovich reaction describes the organic synthesis of substituted cyclopropanols through reaction of esters with dialkyl­dialkoxy­titanium reagents, which are generated in situ from Grignard reagents containing a hydrogen in beta-position and titanium(IV) alkoxides such as titanium isopropoxide. This reaction was first reported by Oleg Kulinkovich and coworkers in 1989.

In chemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

Oxophilicity is the tendency of certain chemical compounds to form oxides by hydrolysis or abstraction of an oxygen atom from another molecule, often from organic compounds. The term is often used to describe metal centers, commonly the early transition metals such as titanium, niobium, and tungsten. Oxophilicity is often stated to be related to the hardness of the element, within the HSAB theory, but it has been shown that oxophilicity depends more on the electronegativity and effective nuclear charge of the element than on its hardness. This explains why the early transition metals, whose electronegativities and effective nuclear charges are low, are very oxophilic. Many main group compounds are also oxophilic, such as derivatives of aluminium, silicon, and phosphorus(III). The handling of oxophilic compounds often requires air-free techniques.

An insertion reaction is a chemical reaction where one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

Methylene is an organic compound with the chemical formula CH
2
. It is a colourless gas that fluoresces in the mid-infrared range, and only persists in dilution, or as an adduct.

In organic chemistry, ethenolysis is a chemical process in which internal olefins are degraded using ethylene as the reagent. The reaction is an example of cross metathesis. The utility of the reaction is driven by the low cost of ethylene as a reagent and its selectivity. It produces compounds with terminal alkene functional groups (α-olefins), which are more amenable to other reactions such as polymerization and hydroformylation.

Hydroxymethylation is a chemical reaction that installs the CH2OH group. The transformation can be implemented in many ways and applies to both industrial and biochemical processes.

In organic chemistry, the Lombardo methylenation is a name reaction that allows for the methylenation of carbonyl compounds with the use of Lombardo's reagent, which is a mix of zinc, dibromomethane, and titanium tetrachloride.

<span class="mw-page-title-main">Acyl cyanide</span> Chemical group (–C(O)C≡N)

In organic chemistry, an acyl cyanide is a functional group with the formula R−C(O)CN and structure R−C(=O)−C≡N. It consists of an acyl group attached to cyanide. Examples include acetyl cyanide, formyl cyanide, and oxalyl dicyanide. Acyl cyanides are reagents in organic synthesis.

References

  1. Braun, W.; Bass, Arnold M.; Pilling, M. (1970-05-15). "Flash Photolysis of Ketene and Diazomethane: The Production and Reaction Kinetics of Triplet and Singlet Methylene". The Journal of Chemical Physics. 52 (10): 5131–5143. doi:10.1063/1.1672751. ISSN   0021-9606.
  2. Winberg, H (1959). "Notes- Synthesis of Cycloheptatriene". The Journal of Organic Chemistry. 24 (2): 264–265. doi:10.1021/jo01084a635. ISSN   0022-3263.
  3. von E. Doering, W.; Buttery, R. G.; Laughlin, R. G.; Chaudhuri, N. (1956). "INDISCRIMINATE REACTION OF METHYLENE WITH THE CARBON-HYDROGEN BOND". Journal of the American Chemical Society. 78 (13): 3224–3224. doi:10.1021/ja01594a071. ISSN   0002-7863.
  4. Eric J. Leopold (1986). "Selective Hydroboration of a 1,3,7-Triene: Homogeraniol". Organic Syntheses. 64: 164. doi:10.15227/orgsyn.064.0164.
  5. Straus, Daniel A.; Morshed, M. Monzur; Dudley, Matthew E.; Hossain, M. Mahmun (2006). "μ-Chlorobis(cyclopentadienyl)(dimethylaluminium)-μ-methylenetitanium". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rc073.pub2. ISBN   0471936235.
  6. Luciano Lombardo (1987). "Methylenation of Carbonyl Compounds: (+)-3-Methylene-cis-p-menthane". Organic Syntheses. 65: 81. doi:10.15227/orgsyn.065.0081.
  7. Marsden, Stephen P; Ducept, Pascal C (2005). "Synthesis of highly substituted allenylsilanes by alkylidenation of silylketenes". Beilstein Journal of Organic Chemistry . 1 (1): 5. doi: 10.1186/1860-5397-1-5 . PMC   1399453 . PMID   16542018.
  8. Ando, Kaori; Oguchi, Mai; Kobayashi, Takahisa; Asano, Haruka; Uchida, Nariaki (2020). "Methylenation for Aldehydes and Ketones Using 1-Methylbenzimidazol-2-yl Methyl Sulfone". The Journal of Organic Chemistry. 85 (15): 9936–9943. doi:10.1021/acs.joc.0c01227. PMID   32608238.
  9. Schreiber, Jakob; Maag, Hans; Hashimoto, Naoto; Eschenmoser, Albert (1971). "Dimethyl(methylene)ammonium Iodide". Angewandte Chemie International Edition in English. 10 (5): 330–331. doi:10.1002/anie.197103301. ISSN   0570-0833.