Miyaura borylation

Last updated
Miyaura borylation
Named after Norio Miyaura
Reaction type Organic redox reaction
Identifiers
Organic Chemistry Portal miyaura-borylation-reaction

Miyaura borylation, also known as the Miyaura borylation reaction, is a named reaction in organic chemistry that allows for the generation of boronates from vinyl or aryl halides with the cross-coupling of bis(pinacolato)diboron in basic conditions with a catalyst such as PdCl2(dppf). The resulting borylated products can be used as coupling partners for the Suzuki reaction. [1]

Contents

Scope

The Miyaura borylation has shown to work for:

Alkyl halides, [2] aryl halides, [1] [3] [4] aryl halides using tetrahydroxydiboron, [5] aryl halides using bis-boronic acid, [6] aryl triflates, [7] aryl mesylates, [8] vinyl halides, [9] vinyl halides of α,β-unsaturated carbonyl compounds, [10] and vinyl triflates. [11]

See also

Related Research Articles

The Heck reaction is the chemical reaction of an unsaturated halide with an alkene in the presence of a base and a palladium catalyst to form a substituted alkene. It is named after Tsutomu Mizoroki and Richard F. Heck. Heck was awarded the 2010 Nobel Prize in Chemistry, which he shared with Ei-ichi Negishi and Akira Suzuki, for the discovery and development of this reaction. This reaction was the first example of a carbon-carbon bond-forming reaction that followed a Pd(0)/Pd(II) catalytic cycle, the same catalytic cycle that is seen in other Pd(0)-catalyzed cross-coupling reactions. The Heck reaction is a way to substitute alkenes.

The Suzuki reaction is an organic reaction, classified as a cross-coupling reaction, where the coupling partners are a boronic acid and an organohalide and the catalyst is a palladium(0) complex. It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of palladium-catalyzed cross-couplings in organic synthesis. This reaction is also known as the Suzuki–Miyaura reaction or simply as the Suzuki coupling. It is widely used to synthesize polyolefins, styrenes, and substituted biphenyls. Several reviews have been published describing advancements and the development of the Suzuki reaction. The general scheme for the Suzuki reaction is shown below, where a carbon-carbon single bond is formed by coupling an organoboron species (R1-BY2) with a halide (R2-X) using a palladium catalyst and a base.

Organoboron chemistry

Organoborane or organoboron compounds are chemical compounds of boron and carbon that are organic derivatives of BH3, for example trialkyl boranes. Organoboron chemistry or organoborane chemistry is the chemistry of these compounds.

The Hiyama coupling is a palladium-catalyzed cross-coupling reaction of organosilanes with organic halides used in organic chemistry to form carbon–carbon bonds. This reaction was discovered in 1988 by Tamejiro Hiyama and Yasuo Hatanaka as a method to form carbon-carbon bonds synthetically with chemo- and regioselectivity. The Hiyama coupling has been applied to the synthesis of various natural products.

The Negishi coupling is a widely employed transition metal catalyzed cross-coupling reaction. The reaction couples organic halides or triflates with organozinc compounds, forming carbon-carbon bonds (C-C) in the process. A palladium (0) species is generally utilized as the metal catalyst, though nickel is sometimes used. A variety of nickel catalysts in either Ni0 or NiII oxidation state can be employed in Negishi cross couplings such as Ni(PPh3)4, Ni(acac)2, Ni(COD)2 etc.

Boronic acid

A boronic acid is a compound related to boric acid in which one of the three hydroxyl groups is replaced by an alkyl or aryl group. As a compound containing a carbon–boron bond, members of this class thus belong to the larger class of organoboranes. Boronic acids act as Lewis acids. Their unique feature is that they are capable of forming reversible covalent complexes with sugars, amino acids, hydroxamic acids, etc.. The pKa of a boronic acid is ~9, but they can form tetrahedral boronate complexes with pKa ~7. They are occasionally used in the area of molecular recognition to bind to saccharides for fluorescent detection or selective transport of saccharides across membranes.

Pinacol Chemical compound

Pinacol is a white solid organic compound. It is a diol that has hydroxyl groups (-OH) on vicinal carbon atoms.

In organic chemistry, the Kumada coupling is a type of cross coupling reaction, useful for generating carbon–carbon bonds by the reaction of a Grignard reagent and an organic halide. The procedure uses transition metal catalysts, typically nickel or palladium, to couple a combination of two alkyl, aryl or vinyl groups. The groups of Robert Corriu and Makoto Kumada reported the reaction independently in 1972.

Catecholborane Chemical compound

Catecholborane (abbreviated HBcat) is an organoboron compound that is useful in organic synthesis. This colourless liquid is a derivative of catechol and a borane, having the formula C6H4O2BH.

Richard F. Heck American chemist

Richard Frederick Heck was an American chemist noted for the discovery and development of the Heck reaction, which uses palladium to catalyze organic chemical reactions that couple aryl halides with alkenes. The analgesic naproxen is an example of a compound that is prepared industrially using the Heck reaction.

A cross-coupling reaction in organic chemistry is a reaction where two fragments are joined together with the aid of a metal catalyst. In one important reaction type, a main group organometallic compound of the type R-M reacts with an organic halide of the type R'-X with formation of a new carbon–carbon bond in the product R-R'. Cross-coupling reaction are a subset of coupling reactions. It is often used in arylations.

Bis(triphenylphosphine)palladium chloride Chemical compound

Bis(triphenylphosphine)palladium chloride is a coordination compound of palladium containing two triphenylphosphine and two chloride ligands. It is a yellow solid that is soluble in some organic solvents. It is used for palladium-catalyzed coupling reactions, e.g. the Sonogashira–Hagihara reaction. The complex is square planar. Many analogous complexes are known with different phosphine ligands.

Bis(pinacolato)diboron Chemical compound

Bis(pinacolato)diboron is a covalent compound containing two boron atoms and two pinacolato ligands. It has the formula [(CH3)4C2O2B]2; the pinacol groups are sometimes abbreviated as "pin", so the structure is sometimes represented as B2pin2. It is a colourless solid that is soluble in organic solvents. It is a commercially available reagent for making pinacol boronic esters for organic synthesis. Unlike some other diboron compounds, B2pin2 is not moisture-sensitive and can be handled in air.

Akira Suzuki (chemist)

Akira Suzuki is a Japanese chemist and Nobel Prize Laureate (2010), who first published the Suzuki reaction, the organic reaction of an aryl- or vinyl-boronic acid with an aryl- or vinyl-halide catalyzed by a palladium(0) complex, in 1979.

1-Decyne is the organic compound with the formula C8H17C≡CH. It is a terminal alkyne. A colorless liquid, 1-decyne is used as a model substrate when evaluating methodology in organic synthesis. It participates in a number of classical reactions including Suzuki-Miyaura couplings, Sonogashira couplings, Huisgen cycloadditions, and borylations.

Metal-catalyzed C–H borylation reactions are transition metal catalyzed organic reactions that produce an organoboron compound through functionalization of aliphatic and aromatic C–H bonds and are therefore useful reactions for carbon–hydrogen bond activation. Metal-catalyzed C–H borylation reactions utilize transition metals to directly convert a C–H bond into a C–B bond. This route can be advantageous compared to traditional borylation reactions by making use of cheap and abundant hydrocarbon starting material, limiting prefunctionalized organic compounds, reducing toxic byproducts, and streamlining the synthesis of biologically important molecules. Boronic acids, and boronic esters are common boryl groups incorporated into organic molecules through borylation reactions. Boronic acids are trivalent boron-containing organic compounds that possess one alkyl substituent and two hydroxyl groups. Similarly, boronic esters possess one alkyl substituent and two ester groups. Boronic acids and esters are classified depending on the type of carbon group (R) directly bonded to boron, for example alkyl-, alkenyl-, alkynyl-, and aryl-boronic esters. The most common type of starting materials that incorporate boronic esters into organic compounds for transition metal catalyzed borylation reactions have the general formula (RO)2B-B(OR)2. For example, bis(pinacolato)diboron (B2Pin2), and bis(catecholato)diborane (B2Cat2) are common boron sources of this general formula.

Catellani reaction

The Catellani reaction was discovered by Marta Catellani and co-workers in 1997. The reaction uses aryl iodides to perform bi- or tri-functionalization, including C-H functionalization of the unsubstituted ortho position(s), followed a terminating cross-coupling reaction at the ipso position. This cross-coupling cascade reaction depends on the ortho-directing transient mediator, norbornene.

Protodeboronation

Protodeboronation, or protodeborylation is a chemical reaction involving the protonolysis of a boronic acid in which a carbon-boron bond is broken and replaced with a carbon-hydrogen bond. Protodeboronation is a well-known undesired side reaction, and frequently associated with metal-catalysed coupling reactions that utilise boronic acids. For a given boronic acid, the propensity to undergo protodeboronation is highly variable and dependent on various factors, such as the reaction conditions employed and the organic substituent of the boronic acid.

In organic and organometallic chemistry, dialkylbiaryl phosphine (or dialkylbiarylphosphine) ligands are phosphorus-containing supporting ligands that are used to modulate the chemical reactivity of palladium and other transition metal based catalysts. They were first described by Stephen L. Buchwald in 1998 for applications in palladium-catalyzed coupling reactions to form carbon-nitrogen and carbon-carbon bonds. Before their development, use of first- or second-generation phosphine ligands for palladium-catalyzed C-N bond-forming cross-coupling (e.g., tris(o-tolyl)phosphine and BINAP, respectively) necessitated harsh conditions, and the scope of the transformation was severely limited. The Suzuki-Miyaura and Negishi cross-coupling reactions were typically performed with Pd(PPh3)4 as catalyst and were mostly limited to aryl bromides and iodides at elevated temperatures, while the widely available aryl chlorides were unreactive. The development of new classes of ligands was needed to address these limitations.

Norio Miyaura was a Japanese organic chemist. He was a professor of graduate chemical engineering at Hokkaido University. His major accomplishments surrounded his work in cross-coupling reactions / conjugate addition reactions of organoboronic acids and addition / coupling reactions of diborons and boranes. He is also the co-author of Cross-Coupling Reactions: A Practical Guide with M. Nomura E. S.. Miyaura was a world-known and accomplished researcher by the time he retired and so, in 2007, he won the Japan Chemical Society Award.

References

  1. 1 2 Ishiyama, Tatsuo; Murata, Miki; Miyaura, Norio (1 November 1995). "Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters". The Journal of Organic Chemistry. 60 (23): 7508–7510. doi:10.1021/jo00128a024.
  2. Dudnik, Alexander S.; Fu, Gregory C. (6 June 2012). "Nickel-Catalyzed Coupling Reactions of Alkyl Electrophiles, Including Unactivated Tertiary Halides, To Generate Carbon–Boron Bonds". J. Am. Chem. Soc. 134 (25): 10693–10697. doi:10.1021/ja304068t. PMC   3384763 . PMID   22668072.
  3. Rao, Kanusu Umamaheswara; Ventateswarlu, Katta (16 March 2018). "PdII-Porphyrin Complexes - the First Use as Safer and Efficient Catalysts for Miyaura Borylation". Synlett. 29 (8): 1055–1060. doi:10.1055/s-0036-1591549.
  4. Tang, Wenjun; Keshipeddy, Santosh; Zhang, Yongda; Wei, Xudong; Savoie, Jolaine; Patel, Nitinchandra D.; Yee, Nathan K.; Senanayake, Chris H. (18 March 2011). "Efficient Monophosphorus Ligands for Palladium-Catalyzed Miyaura Borylation". Organic Letters. 13 (6): 1366–1369. doi:10.1021/ol2000556. PMID   21319836.
  5. Molander, Gary A.; Trice, Sarah L. J.; Dreher, Spencer D. (24 November 2010). "Palladium-Catalyzed, Direct Boronic Acid Synthesis from Aryl Chlorides: A Simplified Route to Diverse Boronate Ester Derivatives". Journal of the American Chemical Society. 132 (50): 17701–17703. doi:10.1021/ja1089759. PMC   3075417 . PMID   21105666.
  6. Molander, Gary A.; Trice, Sarah L. J.; Kennedy, Steven M. (20 September 2012). "Scope of the Two-Step, One-Pot Palladium-Catalyzed Borylation/Suzuki Cross-Coupling Reaction Utilizing Bis-Boronic Acid". The Journal of Organic Chemistry. 77 (19): 8678–8688. doi:10.1021/jo301642v. PMC   3465529 . PMID   22994557.
  7. Thompson, Alicia L. S.; Kabalka, George W.; Akula, Murthy R.; Huffman, John W. (18 January 2005). "The Conversion of Phenols to the Corresponding Aryl Halides Under Mild Conditions". Synthesis. 2005 (4): 547–550. doi:10.1055/s-2005-861791.
  8. Molander, Gary A.; Cavalcanti, Livia N.; García-García, Caraolina (18 June 2013). "Nickel-Catalyzed Borylation of Halides and Pseudohalides with Tetrahydroxydiboron [B2(OH)4]". The Journal of Organic Chemistry. 78 (13): 6427–6439. doi:10.1021/jo401104y. PMC   3740274 . PMID   23777538.
  9. Takahashi, Kou; Takagi, Jun; Ishiyama, Tatsuo; Miyaura, Norio (February 2000). "1-Alkenylboronic acid pinacol esters can be synthesized via a palladium-catalyzed cross-coupling reaction of 1-alkenyl halides or triflates with bis(pinacolato)diboron in toluene at 50°C in the presence of potassium phenoxide and PdCl2(PPh3)2·2PPh3". Chemistry Letters. 29 (2): 126–127. doi:10.1246/cl.2000.126. hdl: 2115/56184 .
  10. Takagi, Jun; Kamon, Akahiro; Ishiyama, Tatsuo; Miyaura, Norio (November 2002). "Synthesis of β-Boryl-α,β-unsaturated Carbonyl Compounds via Palladium-Catalyzed Cross-Coupling Reaction of Bis(pinacolato)diboron with Vinyl Triflates". Synlett. 2002 (11): 1880–1882. doi:10.1055/s-2002-34869. hdl: 2115/14605 .
  11. Takagi, Jun; Takahashi, Kou; Ishiyama, Tatsuo; Miyaura (17 June 2002). "Palladium-Catalyzed Cross-Coupling Reaction of Bis(pinacolato)diboron with 1-Alkenyl Halides or Triflates: Convenient Synthesis of Unsymmetrical 1,3-Dienes via the Borylation-Coupling Sequence". Journal of the American Chemical Society. 124 (27): 8001–8006. doi:10.1021/ja0202255. PMID   12095344.