List of organic reactions

Last updated

Well-known reactions and reagents in organic chemistry include

Contents

0-9

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

Y

Z

See also

Related Research Articles

Pyrrole is a heterocyclic, aromatic, organic compound, a five-membered ring with the formula C4H4NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N-methylpyrrole, C4H4NCH3. Porphobilinogen, a trisubstituted pyrrole, is the biosynthetic precursor to many natural products such as heme.

<span class="mw-page-title-main">Hydrazone</span> Organic compounds - Hydrazones

Hydrazones are a class of organic compounds with the structure R1R2C=N−NH2. They are related to ketones and aldehydes by the replacement of the oxygen =O with the =N−NH2 functional group. They are formed usually by the action of hydrazine on ketones or aldehydes.

<span class="mw-page-title-main">Enamine</span> Class of chemical compounds

An enamine is an unsaturated compound derived by the condensation of an aldehyde or ketone with a secondary amine. Enamines are versatile intermediates.

The Fischer indole synthesis is a chemical reaction that produces the aromatic heterocycle indole from a (substituted) phenylhydrazine and an aldehyde or ketone under acidic conditions. The reaction was discovered in 1883 by Emil Fischer. Today antimigraine drugs of the triptan class are often synthesized by this method.

In organic chemistry, a sigmatropic reaction is a pericyclic reaction wherein the net result is one sigma bond (σ-bond) is changed to another σ-bond in an intramolecular reaction. In this type of rearrangement reaction, a substituent moves from one part of a π-system to another part with simultaneous rearrangement of the π-system. True sigmatropic reactions are usually uncatalyzed, although Lewis acid catalysis is possible. Sigmatropic reactions often have transition-metal catalysts that form intermediates in analogous reactions. The most well-known of the sigmatropic rearrangements are the [3,3] Cope rearrangement, Claisen rearrangement, Carroll rearrangement, and the Fischer indole synthesis.

In organic chemistry, the Knoevenagel condensation reaction is a type of chemical reaction named after German chemist Emil Knoevenagel. It is a modification of the aldol condensation.

The Wittig reaction or Wittig olefination is a chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide called a Wittig reagent. Wittig reactions are most commonly used to convert aldehydes and ketones to alkenes. Most often, the Wittig reaction is used to introduce a methylene group using methylenetriphenylphosphorane (Ph3P=CH2). Using this reagent, even a sterically hindered ketone such as camphor can be converted to its methylene derivative.

<span class="mw-page-title-main">Claisen rearrangement</span> Chemical reaction

The Claisen rearrangement is a powerful carbon–carbon bond-forming chemical reaction discovered by Rainer Ludwig Claisen. The heating of an allyl vinyl ether will initiate a [3,3]-sigmatropic rearrangement to give a γ,δ-unsaturated carbonyl, driven by exergonically favored carbonyl CO bond formation (Δ = −327 kcal/mol.

The Claisen condensation is a carbon–carbon bond forming reaction that occurs between two esters or one ester and another carbonyl compound in the presence of a strong base. The reaction produces a β-keto ester or a β-diketone. It is named after Rainer Ludwig Claisen, who first published his work on the reaction in 1887. The reaction has often been displaced by diketene-based chemistry, which affords acetoacetic esters.

<span class="mw-page-title-main">Knorr pyrrole synthesis</span> Chemical reaction

The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group α to a carbonyl group (2).

The Reformatsky reaction is an organic reaction which condenses aldehydes or ketones with α-halo esters using metallic zinc to form β-hydroxy-esters:

<span class="mw-page-title-main">Chiral auxiliary</span> Stereogenic group placed on a molecule to encourage stereoselectivity in reactions

In stereochemistry, a chiral auxiliary is a stereogenic group or unit that is temporarily incorporated into an organic compound in order to control the stereochemical outcome of the synthesis. The chirality present in the auxiliary can bias the stereoselectivity of one or more subsequent reactions. The auxiliary can then be typically recovered for future use.

<span class="mw-page-title-main">Nicolaou Taxol total synthesis</span> Paper on taxol synthesis

The Nicolaou Taxol total synthesis, published by K. C. Nicolaou and his group in 1994 concerns the total synthesis of taxol. Taxol is an important drug in the treatment of cancer but also expensive because the compound is harvested from a scarce resource, namely the pacific yew.

<span class="mw-page-title-main">Danishefsky Taxol total synthesis</span>

The Danishefsky Taxol total synthesis in organic chemistry is an important third Taxol synthesis published by the group of Samuel Danishefsky in 1996 two years after the first two efforts described in the Holton Taxol total synthesis and the Nicolaou Taxol total synthesis. Combined they provide a good insight in the application of organic chemistry in total synthesis.

<span class="mw-page-title-main">Acyloin</span> Organic compounds of the form –C(O)CH(OH)–

In organic chemistry, acyloins or α-hydroxy ketones are a class of organic compounds of the general form R−C(O)CH(OH)−R', composed of a hydroxy group adjacent to a ketone group. The name acyloin is derived from the fact that they are formally derived from reductive coupling of carboxylic acyl groups. They are one of the two main classes of hydroxy ketones, distinguished by the position of the hydroxy group relative to the ketone; in this form, the hydroxy is on the alpha carbon, explaining the secondary name of α-hydroxy ketone.

<span class="mw-page-title-main">Ortho ester</span> Chemical group with the structure RC(OR)3

In organic chemistry, an ortho ester is a functional group containing three alkoxy groups attached to one carbon atom, i.e. with the general formula RC(OR')3. Orthoesters may be considered as products of exhaustive alkylation of unstable orthocarboxylic acids and it is from these that the name 'ortho ester' is derived. An example is ethyl orthoacetate, CH3C(OCH2CH3)3, more correctly known as 1,1,1-triethoxyethane.

In organic chemistry, the Claisen–Schmidt condensation is the reaction between an aldehyde or ketone having an α-hydrogen with an aromatic carbonyl compound lacking an α-hydrogen. It can be considered as a specific variation of the aldol condensation. This reaction is named after two of its pioneering investigators Rainer Ludwig Claisen and J. Gustav Schmidt, who independently published on this topic in 1880 and 1881. An example is the synthesis of dibenzylideneacetone ( -1,5-diphenylpenta-1,4-dien-3-one).

The Fukuyama coupling is a coupling reaction taking place between a thioester and an organozinc halide in the presence of a palladium catalyst. The reaction product is a ketone. This reaction was discovered by Tohru Fukuyama et al. in 1998.

The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. It was first described by Eduard Buchner and Theodor Curtius in 1885 and later by Fritz Schlotterbeck in 1907. Two German chemists also preceded Schlotterbeck in discovery of the reaction, Hans von Pechmann in 1895 and Viktor Meyer in 1905. The reaction has since been extended to the synthesis of β-keto esters from the condensation between aldehydes and diazo esters. The general reaction scheme is as follows:

The RXNO Ontology is a formal ontology of chemical named reactions. It was originally developed at the Royal Society of Chemistry (RSC) and is associated with the Open Biomedical Ontologies Foundry. The RXNO ontology unifies several previous attempts to systematize chemical reactions including the Merck Index and the hierarchy of Carey, Laffan, Thomson and Williams.

References

  1. Treibs, Wilhelm; Schmidt, Harry (1927). "Zur katalytischen Dehydrierung hydro-aromatischer Verbindungen" [Catalytic dehydrogenation of hydroaromatic compounds]. Berichte der Deutschen Chemischen Gesellschaft (in German). 60 (10): 2335–2341. doi:10.1002/cber.187600901134.
  2. Alder, Kurt; Nobel, Theo (1943). "Über die Anlagerung von Azodicarbonsäure-ester an Aldehyde" [Substituting additions. II. Addition of azodicarboxylic esters to aldehydes.]. Berichte der Deutschen Chemischen Gesellschaft (in German). 76 (1): 54–57. doi:10.1002/cber.19430760106.
  3. Alder, Kurt; Pascher, Franz; Schmitz, Andreas (1943). "Über die Anlagerung von Maleinsäure-anhydrid und Azodicarbonsäure-ester an einfach ungesättigte Koh an einfach ungesättigte Kohlenwasserstoffe. Zur Kenntnis von Substitutionsvorgängen in der Allyl-Stellung" [Substituting additions. I. Addition of maleic anhydride and azodicarboxylic esters to singly unsaturated hydrocarbons. Substitution processes in the allyl position]. Berichte der Deutschen Chemischen Gesellschaft. 76 (1): 27–53. doi:10.1002/cber.19430760105.
  4. Alder, Kurt; Schmidt, Carl-Heinz (1943). "Über die Kondensation des Furans und seiner Homologen mit α,β-ungesättigten Ketonen und Aldehyden†Aufbau von Di-, Tri- und Tetraketonen der Fettreihe" [Substituting additions. III. Condensation of furan and its homologs with α,β-unsaturated ketones and aldehydes. Synthesis of di-, tri-and tetraketones of the aliphatic series.]. Berichte der Deutschen Chemischen Gesellschaft (in German). 76 (3): 183–205. doi:10.1002/cber.19430760302.
  5. Aston, J. G.; Greenburg, R. B. (1942). "alpha-Bromo Secondary Alkyl Ketones. I. Reaction with Sodium Alcoholates. A New Synthesis of Tertiary Acids by Rearrangement1,2". Journal of the American Chemical Society . 62 (10): 2590–2595. doi:10.1021/ja01867a003.
  6. Wang, Zerong (2010). Comprehensive Organic Name Reactions and Reagents. doi:10.1002/9780470638859.conrr026. ISBN   9780471704508.
  7. Sacks, Abraham A.; Aston, J. G. (1951). "α-Halo Ketones. V. The Preparation, Metathesis and Rearrangement of Certain α-Bromoketones". Journal of the American Chemical Society . 73 (8): 3902–3906. doi:10.1021/ja01152a103.
  8. Wagner, R. B.; Moore, James A. (1950). "The Reaction of the Isomeric α-Bromomethyl Cyclohexyl Ketones with Sodium Methoxide". Journal of the American Chemical Society . 72 (7): 2884–2887. doi:10.1021/ja01163a022.
  9. Oehlschlager, A. C.; Zalkow, L. H. (1965). "Bridged Ring Compounds. X.1,2 The Reaction of Benzenesulfonyl Azide with Norbornadiene, Dicyclopentadiene, and Bicyclo[2.2.2]-2-octene". The Journal of Organic Chemistry . 30 (12): 4205–4211. doi:10.1021/jo01023a051.
  10. Hill, Richard K.; Gilman, Norman W. (1967). "A nitrogen analog of the Claisen rearrangement". Tetrahedron Letters . 8 (15): 1421–1423. doi:10.1016/S0040-4039(00)71596-6.
  11. Lipkowitz, K. B.; Scarpone, S.; McCullough, D.; Barney, C. (1979). "The synthesis of N-substituted tetrahydropyridines using the hetero-cope rearrangement". Tetrahedron Letters . 20 (24): 2241–2244. doi:10.1016/S0040-4039(01)93686-X.
  12. Baeyer, Adolf; Villiger, Victor (1899). "Einwirkung des Caro'schen Reagens auf Ketone" [The effect of Caro's reagent on ketones]. Berichte der Deutschen Chemischen Gesellschaft (in German). 32 (3): 3625–3633. doi:10.1002/cber.189903203151.
  13. Baker, Wilson (1933). "Molecular rearrangement of some o-acyloxyacetophenones and the mechanism of the production of 3-acylchromones". Journal of the Chemical Society : 1381–1389. doi:10.1039/JR9330001381.
  14. Baker, Wilson (1934). "Attempts to synthesise 5,6-dihydroxyflavone (primetin)". Journal of the Chemical Society : 1953–1954. doi:10.1039/JR9340001953.
  15. Mahal, Harbhajan S.; Venkataraman, Krishnasami (1934). "Synthetical experiments in the chromone group. Part XIV. The action of sodamide on 1-acyloxy-2-acetonaphthones". Journal of the Chemical Society : 1767–1769. doi:10.1039/JR9340001767.
  16. Bhalla, Diwan C.; Mahal, Harbhajan S.; Venkataraman, Krishnasami (1935). "Synthetical experiments in the chromone group. Part XVII. Further observations on the action of sodamide on o-acyloxyacetophenones". Journal of the Chemical Society : 868–870. doi:10.1039/JR9350000868.
  17. Baldwin, Jack E. (1976). "Rules for ring closure". Journal of the Chemical Society, Chemical Communications (18): 734–736. doi:10.1039/C39760000734.
  18. 1 2 Balz, Günther; Schiemann, Günther (1927). "Über aromatische Fluorverbindungen, I.: Ein neues Verfahren zu ihrer Darstellung" [Aromatic fluorine compounds. I. A new method for their preparation]. Berichte der Deutschen Chemischen Gesellschaft (in German). 60 (5): 1186–1190. doi:10.1002/cber.19270600539.
  19. Bartoli, Giuseppe; Leardini, Rino; Medici, Alessandro; Rosini, Goffredo (1978). "Reactions of nitroarenes with Grignard reagents. General method of synthesis of alkyl-nitroso-substituted bicyclic aromatic systems". Journal of the Chemical Society, Perkin Transactions 1 (7): 692–696. doi:10.1039/P19780000692.
  20. Bartoli, Giuseppe; Palmieri, Gianni; Bosco, Marcella; Dalpozzo, Renato (1989). "The reaction of vinyl grignard reagents with 2-substituted nitroarenes: A new approach to the synthesis of 7-substituted indoles". Tetrahedron Letters . 30 (16): 2129–2132. doi:10.1016/S0040-4039(01)93730-X.
  21. Bartoli, Giuseppe; Bosco, Marcella; Dalpozzo, Renato; Palmieri, Gianni; Marcantoni, Enrico (1991). "Reactivity of nitro- and nitroso-arenes with vinyl grignard reagents: synthesis of 2-(trimethylsilyl)indoles". Journal of the Chemical Society, Perkin Transactions 1 (11): 2757–2761. doi:10.1039/P19910002757.
  22. Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. (1960). "A new photochemical reaction". Journal of the American Chemical Society . 82 (10): 2640–2641. doi:10.1021/ja01495a061.
  23. Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. (1961). "A new photochemical reaction". Journal of the American Chemical Society . 83 (19): 4076–4083. doi:10.1021/ja01480a030.
  24. Cope, Arthur C.; Hardy, Elizabeth M. (1940). "The Introduction of Substituted Vinyl Groups. V. A Rearrangement Involving the Migration of an Allyl Group in a Three-Carbon System". Journal of the American Chemical Society . 62 (2): 441–444. doi:10.1021/ja01859a055.
  25. Finkelstein, Hans (1910). "Darstellung organischer Jodide aus den entsprechenden Bromiden und Chloriden" [Preparation of Organic Iodides from the Corresponding Bromides and Chlorides]. Berichte der Deutschen Chemischen Gesellschaft (in German). 43 (2): 1528–1532. doi:10.1002/cber.19100430257.
  26. Corey, E. J.; Chaykovsky, Michael (1962). "Dimethylsulfoxonium Methylide". Journal of the American Chemical Society . 84 (5): 867–868. doi:10.1021/ja00864a040.
  27. Corey, E. J.; Chaykovsky, Michael (1965). "Dimethyloxosulfonium Methylide ((CH3)2SOCH2) and Dimethylsulfonium Methylide ((CH3)2SCH2). Formation and Application to Organic Synthesis". Journal of the American Chemical Society . 87 (6): 1353–1364. doi:10.1021/ja01084a034.
  28. Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. (1946). "Researches on acetylenic compounds. Part I. The preparation of acetylenic ketones by oxidation of acetylenic carbinols and glycols". Journal of the Chemical Society: 39–45. doi:10.1039/JR9460000039.
  29. Bowers, A.; Halsall, T. G.; Jones, E. R. H.; Lemin, A. J. (1953). "The chemistry of the triterpenes and related compounds. Part XVIII. Elucidation of the structure of polyporenic acid C". Journal of the Chemical Society: 2548–2560. doi:10.1039/JR9530002548.
  30. Julia, Marc; Paris, Jean-Marc (1973). "Syntheses a l'aide de sulfones v(+)- methode de synthese generale de doubles liaisons" [Syntheses with the help of sulfones. V. General method of synthesis of double bonds]. Tetrahedron Letters (in French). 14 (49): 4833–4836. doi:10.1016/S0040-4039(01)87348-2.
  31. Reformatsky, Sergius (1887). "Neue Synthese zweiatomiger einbasischer Säuren aus den Ketonen". Berichte der Deutschen Chemischen Gesellschaft. 20 (1): 1210–1211. doi:10.1002/cber.188702001268.
  32. Ritter, John J.; Kalish, Joseph (1948). "A New Reaction of Nitriles. II. Synthesis of t-Carbinamines". Journal of the American Chemical Society . 70 (12): 4048–4050. doi:10.1021/ja01192a023. PMID   18105933.
  33. Ritter, John J.; Minieri, P. Paul (1948). "A New Reaction of Nitriles. I. Amides from Alkenes and Mononitriles". Journal of the American Chemical Society . 70 (12): 4045–4048. doi:10.1021/ja01192a022. PMID   18105932.
  34. Katsuki, Tsutomu; Sharpless, K. Barry (1980). "The first practical method for asymmetric epoxidation". Journal of the American Chemical Society . 102 (18): 5974–5976. doi:10.1021/ja00538a077.