Karl Barry Sharpless

Last updated

Karl Barry Sharpless
Barry Sharpless 02.jpg
Sharpless in 2018
Born
Karl Barry Sharpless

(1941-04-28) April 28, 1941 (age 82)
Philadelphia, Pennsylvania, U.S.
Alma mater Dartmouth College (BA)
Stanford University (MS, PhD)
Known for
Spouse
Jan Dueser
(m. 1965)
Awards
Scientific career
Fields Stereochemistry
Institutions
Thesis Studies of the Mechanism of Action of 2,3-oxidosqualene-lanosterol cyclase: Featuring Enzymic Cyclization of Modified Squalene Oxides  (1968)
Doctoral advisor Eugene van Tamelen
Doctoral students M.G. Finn
Other notable studentsUndergrads:Post-docs:

Karl Barry Sharpless (born April 28, 1941) is an American stereochemist. He is a two-time Nobel laureate in Chemistry known for his work on stereoselective reactions and click chemistry.

Contents

Sharpless was awarded half of the 2001 Nobel Prize in Chemistry "for his work on chirally catalysed oxidation reactions", and one third of the 2022 prize, jointly with Carolyn R. Bertozzi and Morten P. Meldal, "for the development of click chemistry and bioorthogonal chemistry". [1] [2] Sharpless is the fifth person (in addition to two organizations), to have twice been awarded a Nobel prize, along with Marie Curie, John Bardeen, Linus Pauling and Frederick Sanger, and the third to have been awarded two prizes in the same discipline (after Bardeen and Sanger).

Early life and education

Sharpless was born April 28, 1941, in Philadelphia, Pennsylvania. [3] His childhood was filled with summers at his family cottage on the Manasquan River in New Jersey. This is where Sharpless developed a love for fishing that he would continue throughout his life, spending summers in college working on fishing boats. [4] He graduated from Friends' Central School in 1959, [5] and continued his studies at Dartmouth College, earning an A.B. in 1963. Sharpless originally planned to attend medical school after his undergraduate degree, but his research professor convinced him to continue his education in chemistry. [6] He earned his Ph.D. in Organic Chemistry from Stanford University in 1968 under Eugene van Tamelen. [7] He continued post-doctoral work at Stanford University (1968–1969) with James P. Collman, working on organometallic chemistry. Sharpless then moved to Harvard University (1969–1970), studying enzymology in Konrad E. Bloch's lab. [6]

Academic career

Sharpless was a professor at the Massachusetts Institute of Technology (1970–1977, 1980–1990) and Stanford University (1977–1980). [8] While at Stanford, Sharpless discovered Sharpless asymmetric epoxidation, which was used to make (+)-disparlure. As of 2023, Sharpless led a laboratory at Scripps Research. [9]

Research

Sharpless developed stereoselective oxidation reactions, and showed that the formation of an inhibitor with femtomolar potency can be catalyzed by the enzyme acetylcholinesterase, beginning with an azide and an alkyne. He discovered several chemical reactions which have transformed asymmetric synthesis from science fiction to the relatively routine, including aminohydroxylation, dihydroxylation, and the Sharpless asymmetric epoxidation. [10]

In 2001 he was awarded a half-share of the Nobel Prize in Chemistry for his work on chirally catalyzed oxidation reactions (Sharpless epoxidation, Sharpless asymmetric dihydroxylation, Sharpless oxyamination). The other half of the year's Prize was shared between William S. Knowles and Ryōji Noyori (for their work on stereoselective hydrogenation). [1]

The term "click chemistry" was coined by Sharpless around the year 2000, and was first fully described by Sharpless, Hartmuth Kolb, and M.G. Finn at The Scripps Research Institute in 2001. [11] [2] This involves a set of highly selective, exothermic reactions which occur under mild conditions; the most successful example is the azide alkyne Huisgen cycloaddition to form 1,2,3-triazoles. [12]

As of 2022, Sharpless has an h-index of 180 according to Google Scholar [ citation needed ] and of 124 according to Scopus. [13]

Awards and honors

Sharpless is a two-time Nobel Laureate. He is a recipient of the 2001 and 2022 Nobel Prize in Chemistry for his work on "chirally catalysed oxidation reactions", and "click chemistry", respectively. [1] [2]

In 2019, Sharpless was awarded the Priestley medal, the American Chemical Society's highest honor, for "the invention of catalytic, asymmetric oxidation methods, the concept of click chemistry and development of the copper-catalyzed version of the azide-acetylene cycloaddition reaction.". [5] [6] He received the Gold Medal of the American Institute of Chemists in 2023. [14]

He is Distinguished University Professor at Kyushu University. He holds honorary degrees from the KTH Royal Institute of Technology (1995), Technical University of Munich (1995), Catholic University of Louvain (1996) and Wesleyan University (1999). [8]

Personal life

Sharpless married Jan Dueser in 1965 and they have three children. [10] He was blinded in one eye during a lab accident in 1970 where an NMR tube exploded, shortly after he arrived at MIT as an assistant professor. After this accident, Sharpless stresses "there's simply never an adequate excuse for not wearing safety glasses in the laboratory at all times." [15]

Related Research Articles

<span class="mw-page-title-main">Ryōji Noyori</span> Japanese chemist

Ryōji Noyori is a Japanese chemist. He won the Nobel Prize in Chemistry in 2001, Noyori shared a half of the prize with William S. Knowles for the study of chirally catalyzed hydrogenations; the second half of the prize went to K. Barry Sharpless for his study in chirally catalyzed oxidation reactions.

<span class="mw-page-title-main">Sharpless epoxidation</span> Chemical reaction

The Sharpless epoxidation reaction is an enantioselective chemical reaction to prepare 2,3-epoxyalcohols from primary and secondary allylic alcohols. The oxidizing agent is tert-butyl hydroperoxide. The method relies on a catalyst formed from titanium tetra(isopropoxide) and diethyl tartrate.

Sharpless asymmetric dihydroxylation is the chemical reaction of an alkene with osmium tetroxide in the presence of a chiral quinine ligand to form a vicinal diol. The reaction has been applied to alkenes of virtually every substitution, often high enantioselectivities are realized, with the chiral outcome controlled by the choice of dihydroquinidine (DHQD) vs dihydroquinine (DHQ) as the ligand. Asymmetric dihydroxylation reactions are also highly site selective, providing products derived from reaction of the most electron-rich double bond in the substrate.

The following outline is provided as an overview of and topical guide to organic chemistry:

Organic synthesis is a branch of chemical synthesis concerned with the construction of organic compounds. Organic compounds are molecules consisting of combinations of covalently-linked hydrogen, carbon, oxygen, and nitrogen atoms. Within the general subject of organic synthesis, there are many different types of synthetic routes that can be completed including total synthesis, stereoselective synthesis, automated synthesis, and many more. Additionally, in understanding organic synthesis it is necessary to be familiar with the methodology, techniques, and applications of the subject.

The 1,3-dipolar cycloaddition is a chemical reaction between a 1,3-dipole and a dipolarophile to form a five-membered ring. The earliest 1,3-dipolar cycloadditions were described in the late 19th century to the early 20th century, following the discovery of 1,3-dipoles. Mechanistic investigation and synthetic application were established in the 1960s, primarily through the work of Rolf Huisgen. Hence, the reaction is sometimes referred to as the Huisgen cycloaddition. 1,3-dipolar cycloaddition is an important route to the regio- and stereoselective synthesis of five-membered heterocycles and their ring-opened acyclic derivatives. The dipolarophile is typically an alkene or alkyne, but can be other pi systems. When the dipolarophile is an alkyne, aromatic rings are generally produced.

<span class="mw-page-title-main">Enantioselective synthesis</span> Chemical reaction(s) which favor one chiral isomer over another

Enantioselective synthesis, also called asymmetric synthesis, is a form of chemical synthesis. It is defined by IUPAC as "a chemical reaction in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric products in unequal amounts."

In chemistry, stereoselectivity is the property of a chemical reaction in which a single reactant forms an unequal mixture of stereoisomers during a non-stereospecific creation of a new stereocenter or during a non-stereospecific transformation of a pre-existing one. The selectivity arises from differences in steric and electronic effects in the mechanistic pathways leading to the different products. Stereoselectivity can vary in degree but it can never be total since the activation energy difference between the two pathways is finite: both products are at least possible and merely differ in amount. However, in favorable cases, the minor stereoisomer may not be detectable by the analytic methods used.

In chemical synthesis, click chemistry is a class of simple, atom-economy reactions commonly used for joining two molecular entities of choice. Click chemistry is not a single specific reaction, but describes a way of generating products that follow examples in nature, which also generates substances by joining small modular units. In many applications, click reactions join a biomolecule and a reporter molecule. Click chemistry is not limited to biological conditions: the concept of a "click" reaction has been used in chemoproteomic, pharmacological, biomimetic and molecular machinery applications. However, they have been made notably useful in the detection, localization and qualification of biomolecules.

The azide-alkyne Huisgen cycloaddition is a 1,3-dipolar cycloaddition between an azide and a terminal or internal alkyne to give a 1,2,3-triazole. Rolf Huisgen was the first to understand the scope of this organic reaction. American chemist Karl Barry Sharpless has referred to this cycloaddition as "the cream of the crop" of click chemistry and "the premier example of a click reaction".

<span class="mw-page-title-main">William Standish Knowles</span> American chemist (1917–2012)

William Standish Knowles was an American chemist. He was born in Taunton, Massachusetts. Knowles was one of the recipients of the 2001 Nobel Prize in Chemistry. He split half the prize with Ryōji Noyori for their work in asymmetric synthesis, specifically for his work in hydrogenation reactions. The other half was awarded to K. Barry Sharpless for his work in oxidation reactions.

Asymmetric catalytic oxidation is a technique of oxidizing various substrates to give an enantio-enriched product using a catalyst. Typically, but not necessarily, asymmetry is induced by the chirality of the catalyst. Typically, but again not necessarily, the methodology applies to organic substrates. Functional groups that can be prochiral and readily susceptible to oxidation include certain alkenes and thioethers. Challenging but pervasive prochiral substrates are C-H bonds of alkanes. Instead of introducing oxygen, some catalysts, biological and otherwise, enantioselectively introduce halogens, another form of oxidation.

Chiral Lewis acids (CLAs) are a type of Lewis acid catalyst. These acids affect the chirality of the substrate as they react with it. In such reactions, synthesis favors the formation of a specific enantiomer or diastereomer. The method is an enantioselective asymmetric synthesis reaction. Since they affect chirality, they produce optically active products from optically inactive or mixed starting materials. This type of preferential formation of one enantiomer or diastereomer over the other is formally known as asymmetric induction. In this kind of Lewis acid, the electron-accepting atom is typically a metal, such as indium, zinc, lithium, aluminium, titanium, or boron. The chiral-altering ligands employed for synthesizing these acids often have multiple Lewis basic sites that allow the formation of a ring structure involving the metal atom.

<span class="mw-page-title-main">Morten P. Meldal</span> Danish chemist (born 1954)

Morten Peter Meldal is a Danish chemist and Nobel laureate. He is a professor of chemistry at the University of Copenhagen in Copenhagen, Denmark. He is best known for developing the CuAAC-click reaction, concurrently with but independent of Valery V. Fokin and K. Barry Sharpless.

The term bioorthogonal chemistry refers to any chemical reaction that can occur inside of living systems without interfering with native biochemical processes. The term was coined by Carolyn R. Bertozzi in 2003. Since its introduction, the concept of the bioorthogonal reaction has enabled the study of biomolecules such as glycans, proteins, and lipids in real time in living systems without cellular toxicity. A number of chemical ligation strategies have been developed that fulfill the requirements of bioorthogonality, including the 1,3-dipolar cycloaddition between azides and cyclooctynes, between nitrones and cyclooctynes, oxime/hydrazone formation from aldehydes and ketones, the tetrazine ligation, the isocyanide-based click reaction, and most recently, the quadricyclane ligation.

In homogeneous catalysis, C2-symmetric ligands refer to ligands that lack mirror symmetry but have C2 symmetry. Such ligands are usually bidentate and are valuable in catalysis. The C2 symmetry of ligands limits the number of possible reaction pathways and thereby increases enantioselectivity, relative to asymmetrical analogues. C2-symmetric ligands are a subset of chiral ligands. Chiral ligands, including C2-symmetric ligands, combine with metals or other groups to form chiral catalysts. These catalysts engage in enantioselective chemical synthesis, in which chirality in the catalyst yields chirality in the reaction product.

Tsutomu Katsuki was an organic chemist who primarily focused on asymmetric oxidation reactions utilizing transition metal catalysts.

<span class="mw-page-title-main">Dhevalapally B. Ramachary</span> Indian chemist

Dhevalapally B. RamacharyFTAS, FRSC, FASc, FNASc, also known as D. B. Ramachary, is an Indian chemist and professor at the School of Chemistry, University of Hyderabad. He has made numerous contributions in various fields of chemical science.

M. G. Finn is an American chemist and professor at the Georgia Institute of Technology.

An organic azide is an organic compound that contains an azide functional group. Because of the hazards associated with their use, few azides are used commercially although they exhibit interesting reactivity for researchers. Low molecular weight azides are considered especially hazardous and are avoided. In the research laboratory, azides are precursors to amines. They are also popular for their participation in the "click reaction" between an azide and an alkyne and in Staudinger ligation. These two reactions are generally quite reliable, lending themselves to combinatorial chemistry.

References

  1. 1 2 3 "The 2001 Nobel Prize in Chemistry" (Press release). Nobel Foundation. October 10, 2001. Retrieved January 17, 2024.
  2. 1 2 3 "The Nobel Prize in Chemistry 2022". Nobel Foundation. Retrieved October 5, 2022.
  3. Rogers, Kara, ed. (April 24, 2023). "K. Barry Sharpless". Encyclopedia Britannica . Retrieved January 17, 2024.
  4. Sharpless, Barry (December 8, 2001). "Searching For New Reactivity" (PDF). Nobel Prize.
  5. 1 2 Halford, Bethany (March 31, 2019). "2019 Priestley Medalist K. Barry Sharpless works magic in the world of molecules". Chemical & Engineering News . Vol. 97, no. 13. Retrieved January 17, 2024.
  6. 1 2 3 "K. Barry Sharpless named 2019 Priestley Medalist". Chemical & Engineering News. Retrieved April 8, 2019.
  7. Sharpless, Karl Barry (1968). Studies of the mechanism of action of 2,3-oxidosqualene-lanosterol cyclase: featuring enzymic cyclization of modified squalene oxides (Ph.D.). Stanford University. OCLC   66229398. ProQuest   302369766.
  8. 1 2 Henderson, Andrea Kovacs (2009). American Men & Women of Science . Farmington Hills, MI: Gale. Cengage Learning. pp.  764. ISBN   9781414433066.
  9. "Sharpless Lab - Group Members". Scripps Research . Retrieved January 17, 2024.
  10. 1 2 "K. Barry Sharpless". Notable Names Database. Soylent Communications. 2014. Retrieved July 12, 2014.
  11. Kolb, Hartmuth C.; Finn, M. G.; Sharpless, K. Barry (June 1, 2001). "Click Chemistry: Diverse Chemical Function from a Few Good Reactions". Angewandte Chemie. 40 (11): 2004–2021. doi:10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. ISSN   1521-3773. PMID   11433435.
  12. Evans, Richard A. (2007). "The Rise of Azide–Alkyne 1,3-Dipolar 'Click' Cycloaddition and its Application to Polymer Science and Surface Modification". Australian Journal of Chemistry. 60 (6): 384. doi:10.1071/CH06457. ISSN   0004-9425.
  13. "Scopus preview – Sharpless, K. Barry – Author details – Scopus". www.scopus.com. Retrieved October 16, 2021.
  14. "American Institute of Chemists – Gold Medal Awards". www.theaic.org. Retrieved August 22, 2023.
  15. Barry Sharpless, Karl (March 11, 1992). "A cautionary tale from the past". MIT News. Retrieved October 5, 2022.