Disparlure

Last updated
Disparlure
Disparlure.svg
Names
IUPAC name
cis-7,8-epoxy-2-methyloctadecane
Other names
(2S-cis)-2-Decyl-3-(5-methylhexyl)oxirane
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.053.973 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 259-390-8
PubChem CID
UNII
  • InChI=1S/C19H38O/c1-4-5-6-7-8-9-10-11-15-18-19(20-18)16-13-12-14-17(2)3/h17-19H,4-16H2,1-3H3/t18-,19+/m0/s1
    Key: HFOFYNMWYRXIBP-RBUKOAKNSA-N
  • CCCCCCCCCC[C@H]1[C@H](O1)CCCCC(C)C
Properties
C19H38O
Molar mass 282.51 g mol−1
Appearancevicious colorless oil
Density 0.828 g cm−3 at 25 °C
Boiling point 146-148°C
Hazards
NFPA 704 (fire diamond)
0
2
0
Flash point 51.67°C
Safety data sheet (SDS) External MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

cis-7,8-Epoxy-2-methyloctadecane (also known as disparlure) is a chemical compound with formula C19H38O. It is a sex pheromone found in moths, such as the spongy moth, and is used to attract a mate. It is also a harmful pesticide for many tree species.

Contents

Occurrences

Disparlure is produced by female moths, such as the spongy and nun moths. It is a sex pheromone, a chemical that is released by the moths in order to attract a male mate. [1] Disparlure has two enantiomers, referred to by (+) and (-). The (+) enantiomer is typically used to attract the males by the females, while the (-) enantiomer tends to have the opposite effect. The (-) enantiomer inhibits attractions and turns the males away from females. [2]

Synthesis

There are two main ways to synthesize disparlure. They are either using chiral pools, which are costly and time consuming, or asymmetric epoxidation, which is quick, easy, and cheap. Some studies have used asymmetric epoxidation, which involves processes such as constructing an epoxide ring from the diols, filtrations, and chromatography. This procedure can produced yields over 70% using a six-step process that is simple and inexpensive. [3] This strategy, as well as others, can be used to investigate other insect sex pheromones because these methods are so flexible and reliable. The synthesis of disparlure found that the natural form (+) is more active than its (-) enantiomer and there have been over twenty different approaches to synthesize the natural form of disparlure. [4] Quick synthesis of (+) disparlure is important for its study. One such method involved four steps beginning with the formation of a cis-Vinyl epoxide by reacting undecanyl aldehydes with (Z)-(γ-chloroallyl)diisopinocampheylborane. Hydroboration and oxidation of this cis-vinyl epoxide yields a cis-3,4-epoxy alcohol that can then be purified using recrystallization. The final step is tosylation and alkylation of the alcohol which gives (+) cis-7,8-epoxy-2-methyloctadecane with high yield. [5] Additionally, the stereospecific Gringard products of (R)-2,3-cyclohexylideneglyceraldehyde are two 1,2-syn-diols that can be used to produce either enantiomer of disparlure. Additionally, a simple reaction of disparlure with an aqueous solution of weak acid and potassium permanganate produces undecanoic acid and 6-methyl-heptanoic acid, two carboxylic acids. [6] [7]

Preparation of acetaldoxime from acetaldehyde and hydroxylamine Disparlure synthesis.png
Preparation of acetaldoxime from acetaldehyde and hydroxylamine

Reagents and conditions:

Uses

Disparlure, which is the synthetic form of the spongy moth sex pheromone, is used to detect its newly founded populations and estimate population density across the United States. [9] The spongy moth is a very harmful pest for plants and affects forest, shade, and orchard trees across North America and parts of Europe. Using disparlure as a pest management tool has been shown to be effective to reduce damage to forests. [10] This pheromone can usually be applied to trap, catch and disrupt spongy moth mating in order to address the economic and environmental impacts caused by the expanding range of infestation. Successful mating attempts can be significantly reduced as a result. [11]

Related Research Articles

<span class="mw-page-title-main">Sharpless epoxidation</span>

The Sharpless epoxidation reaction is an enantioselective chemical reaction to prepare 2,3-epoxyalcohols from primary and secondary allylic alcohols. The oxidizing agent is tert-butyl hydroperoxide. The method relies on a catalyst formed from titanium tetra(isopropoxide) and diethyl tartrate.

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Epoxide</span> Organic compounds with a carbon-carbon-oxygen ring

In organic chemistry, an epoxide is a cyclic ether with a three-atom ring. This ring approximates an equilateral triangle, which makes it strained, and hence highly reactive, more so than other ethers. They are produced on a large scale for many applications. In general, low molecular weight epoxides are colourless and nonpolar, and often volatile.

1,1-Bi-2-naphthol (BINOL) is an organic compound that is often used as a ligand for transition-metal catalysed asymmetric synthesis. BINOL has axial chirality and the two enantiomers can be readily separated and are stable toward racemisation. The specific rotation of the two enantiomers is 35.5°, with the R enantiomer being the dextrorotary one. BINOL is a precursor for another chiral ligand called BINAP. The volumetric mass density of the two enantiomers is 0.62 g cm−3.

<span class="mw-page-title-main">Corey–Itsuno reduction</span>

The Corey–Itsuno reduction, also known as the Corey–Bakshi–Shibata (CBS) reduction, is a chemical reaction in which an achiral ketone is enantioselectively reduced to produce the corresponding chiral, non-racemic alcohol. The oxazaborolidine reagent which mediates the enantioselective reduction of ketones was previously developed by the laboratory of Itsuno and thus this transformation may more properly be called the Itsuno-Corey oxazaborolidine reduction.

<span class="mw-page-title-main">Cabbage looper</span> Species of moth

The cabbage looper is a medium-sized moth in the family Noctuidae, a family commonly referred to as owlet moths. Its common name comes from its preferred host plants and distinctive crawling behavior. Cruciferous vegetables, such as cabbage, bok choy, and broccoli, are its main host plant; hence, the reference to cabbage in its common name. The larva is called a looper because it arches its back into a loop when it crawls.

(<i>E</i>)-Stilbene Chemical compound

(E)-Stilbene, commonly known as trans-stilbene, is an organic compound represented by the condensed structural formula C6H5CH=CHC6H5. Classified as a diarylethene, it features a central ethylene moiety with one phenyl group substituent on each end of the carbon–carbon double bond. It has an (E) stereochemistry, meaning that the phenyl groups are located on opposite sides of the double bond, the opposite of its geometric isomer, cis-stilbene. Trans-stilbene occurs as a white crystalline solid at room temperature and is highly soluble in organic solvents. It can be converted to cis-stilbene photochemically, and further reacted to produce phenanthrene.

<span class="mw-page-title-main">Chiral auxiliary</span> Stereogenic group placed on a molecule to encourage stereoselectivity in reactions

In stereochemistry, a chiral auxiliary is a stereogenic group or unit that is temporarily incorporated into an organic compound in order to control the stereochemical outcome of the synthesis. The chirality present in the auxiliary can bias the stereoselectivity of one or more subsequent reactions. The auxiliary can then be typically recovered for future use.

<span class="mw-page-title-main">Johnson–Corey–Chaykovsky reaction</span> Chemical reaction in organic chemistry

The Johnson–Corey–Chaykovsky reaction is a chemical reaction used in organic chemistry for the synthesis of epoxides, aziridines, and cyclopropanes. It was discovered in 1961 by A. William Johnson and developed significantly by E. J. Corey and Michael Chaykovsky. The reaction involves addition of a sulfur ylide to a ketone, aldehyde, imine, or enone to produce the corresponding 3-membered ring. The reaction is diastereoselective favoring trans substitution in the product regardless of the initial stereochemistry. The synthesis of epoxides via this method serves as an important retrosynthetic alternative to the traditional epoxidation reactions of olefins.

<span class="mw-page-title-main">Wharton reaction</span>

The Wharton olefin synthesis or the Wharton reaction is a chemical reaction that involves the reduction of α,β-epoxy ketones using hydrazine to give allylic alcohols. This reaction, introduced in 1961 by P. S. Wharton, is an extension of the Wolff–Kishner reduction. The general features of this synthesis are: 1) the epoxidation of α,β-unsaturated ketones is achieved usually in basic conditions using hydrogen peroxide solution in high yield; 2) the epoxy ketone is treated with 2–3 equivalents of a hydrazine hydrate in presence of substoichiometric amounts of acetic acid. This reaction occurs rapidly at room temperature with the evolution of nitrogen and the formation of an allylic alcohol. It can be used to synthesize carenol compounds. Wharton's initial procedure has been improved.

In organic chemistry, kinetic resolution is a means of differentiating two enantiomers in a racemic mixture. In kinetic resolution, two enantiomers react with different reaction rates in a chemical reaction with a chiral catalyst or reagent, resulting in an enantioenriched sample of the less reactive enantiomer. As opposed to chiral resolution, kinetic resolution does not rely on different physical properties of diastereomeric products, but rather on the different chemical properties of the racemic starting materials. The enantiomeric excess (ee) of the unreacted starting material continually rises as more product is formed, reaching 100% just before full completion of the reaction. Kinetic resolution relies upon differences in reactivity between enantiomers or enantiomeric complexes.

<span class="mw-page-title-main">Aziridines</span>

Aziridines are organic compounds containing the aziridine functional group, a three-membered heterocycle with one amine (-NR-) and two methylene bridges. The parent compound is aziridine, with molecular formula C
2
H
4
NH
. Several drugs feature aziridine rings, including mitomycin C, porfiromycin, and azinomycin B (carzinophilin).

<span class="mw-page-title-main">Chiral derivatizing agent</span>

A chiral derivatizing agent (CDA) also known as a chiral resolving reagent, is a chiral auxiliary used to convert a mixture of enantiomers into diastereomers in order to analyze the quantities of each enantiomer present within the mix. Analysis can be conducted by spectroscopy or by chromatography. The use of chiral derivatizing agents has declined with the popularization of chiral HPLC. Besides analysis, chiral derivatization is also used for chiral resolution, the actual physical separation of the enantiomers.

<span class="mw-page-title-main">Lithium triethylborohydride</span> Chemical compound

Lithium triethylborohydride is the organoboron compound with the formula LiEt3BH. Commonly referred to as LiTEBH or Superhydride, it is a powerful reducing agent used in organometallic and organic chemistry. It is a colorless or white liquid but is typically marketed and used as a THF solution. The related reducing agent sodium triethylborohydride is commercially available as toluene solutions.

<span class="mw-page-title-main">Organoindium chemistry</span>

Organoindium chemistry is the chemistry of compounds containing In-C bonds. The main application of organoindium chemistry is in the preparation of semiconducting components for microelectronic applications. The area is also of some interest in organic synthesis. Most organoindium compounds feature the In(III) oxidation state, akin to its lighter congeners Ga(III) and B(III).

<span class="mw-page-title-main">Jacobsen's catalyst</span> Chemical compound

Jacobsen's catalyst is the common name for N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane­diaminomanganese(III) chloride, a coordination compound of manganese and a salen-type ligand. It is used as an asymmetric catalyst in the Jacobsen epoxidation, which is renowned for its ability to enantioselectively transform prochiral alkenes into epoxides. Before its development, catalysts for the asymmetric epoxidation of alkenes required the substrate to have a directing functional group, such as an alcohol as seen in the Sharpless epoxidation. This compound has two enantiomers, which give the appropriate epoxide product from the alkene starting material.

The divinylcyclopropane-cycloheptadiene rearrangement is an organic chemical transformation that involves the isomerization of a 1,2-divinylcyclopropane into a cycloheptadiene or -triene. It is conceptually related to the Cope rearrangement, but has the advantage of a strong thermodynamic driving force due to the release of ring strain. This thermodynamic power is recently being considered as an alternative energy source.

The retro-Diels–Alder reaction is the reverse of the Diels–Alder (DA) reaction, a [4+2] cycloelimination. It involves the formation of a diene and dienophile from a cyclohexene. It can be accomplished spontaneously with heat, or with acid or base mediation.

Nucleophilic epoxidation is the formation of epoxides from electron-deficient double bonds through the action of nucleophilic oxidants. Nucleophilic epoxidation methods represent a viable alternative to electrophilic methods, many of which do not epoxidize electron-poor double bonds efficiently.

The Payne rearrangement is the isomerization, under basic conditions, of 2,3-epoxy alcohols to isomeric 1,2-epoxy alcohols with inversion of configuration. Aza- and thia-Payne rearrangements of aziridines and thiiraniums, respectively, are also known.

References

  1. Wang, Zhigang, Jianfeng Zheng, and Peiqiang Huang. “Asymmetric Synthesis of Both Enantiomers of Disparlure.” Chinese Journal of Chemistry. (2012), 30(1), 23-28. Sci-Finder. Web. 24 February 2013
  2. Hansen, K. (1984). Discrimination and production of disparlure enantiomers by the gypsy moth and the nun moth . Physiological Entomology, 9, 9-18.
  3. Koumbis, Alexandros and Demetrios Chronopoulos. “A short and efficient synthesis of (+)-disparlure and its enantiomer.” Tetrahedron Letters. (2005), 46(25), 4353-4355. Sci-Finder. Web. 24 February 2013.
  4. Wang, Zhigang, Jianfeng Zheng, and Peiqiang Huang. “Asymmetric Synthesis of Both Enantiomers of Disparlure.” Chinese Journal of Chemistry. (2012), 30(1), 23-28. Sci-Finder. Web. 24 February 2013.
  5. Hu, S., Jayaraman, S., & Oehlschlager A. C. (1999). An efficient enantioselective synthesis of (+)-Disparlure. The Journal of Organic Chemistry. 64: 3719-3721
  6. McMurray, J. (2011). Organic Chemistry: With Biological Applications (Second Edition). Belmont. Mary Finch.
  7. Dubey, A. K., & Chattopadhyay, A. (2011). An enantiodivergent synthesis of both ( )- and (−)-disparlure from (r)-2,3-cyclohexylideneglyceraldehyde. Tetrahedron: Asymmetry, 22, 1516-1521.
  8. Koumbis, Alexandros and Demetrios Chronopoulos. “A short and efficient synthesis of (+)-disparlure and its enantiomer.” Tetrahedron Letters. (2005), 46(25), 4353-4355. Sci-Finder. Web. 24 February 2013.
  9. Tobin, P.C., Zhang, A., Onufrieva, K., & Leonard, S.D., Field Evaluation of Effect of Temperature on Release of Disparlure from a Pheromone-Baited Trapping System used to Monitor Gypsy Moth (Lepidoptera: Lymantriidae), "Journal of Economic Entomology", "2011", "104", pp. 1265-1271. DOI: http://dx.doi.org/10.1603/EC11063
  10. Koumbis, Alexandros and Demetrios Chronopoulos. “A short and efficient synthesis of (+)-disparlure and its enantiomer.” Tetrahedron Letters. (2005), 46(25), 4353-4355. Sci-Finder. Web. 24 February 2013.
  11. Thorpe., K.W., Tcheslavskaia, K.S.,Tobin, P.C., Blackburn. L.M., Leonard, D.S., & Roberts, E.A. Persistent effects of aerial applications of disparlure on gypsy moth: trap catch and mating success. "Entomologia Experimentalis et Applicata.", "2007", "125". pp 223-229. DOI: 10.1111/j.1570-7458.2007.00613.x