Stuart Schreiber

Last updated
Stuart L. Schreiber
SchreiberHeadshot.jpg
Stuart Schreiber
Born (1956-02-06) February 6, 1956 (age 68)
Alma mater University of Virginia
Harvard University
Known forOrganic Synthesis
Chemical Biology
Human Biology
Therapeutics Discovery
Awards Arthur C. Cope Award (2015)
Wolf Prize (2016)
Scientific career
Fields Chemical Biology
Institutions Yale University
Harvard University
Broad Institute
Thesis I: Oxidation of tertiary amines / II: Peroxides in organic synthesis  (1981)
Doctoral advisor Robert Burns Woodward
Yoshito Kishi

Stuart Schreiber, Ph.D. is the Morris Loeb Research Professor at Harvard University, [1] a co-Founder of the Broad Institute, [2] Howard Hughes Medical Institute Investigator, Emeritus, [3] and a member of the National Academy of Sciences [4] and National Academy of Medicine. [5] He currently leads Arena BioWorks.

Contents

His work integrates chemical biology and human biology to advance the science of therapeutics. Key advances include the discovery that small molecules can function as “molecular glues” that promote protein–protein interactions, the co-discovery of mTOR and its role in nutrient-response signaling, the discovery of histone deacetylases and (with Michael Grunstein and David Allis) the demonstration that chromatin marks regulate gene expression, the development and application of diversity-oriented synthesis to microbial therapeutics, and the discovery of vulnerabilities of cancer cells linked to genetic, lineage and cell-state features, including ferroptotic vulnerabilities. His notable awards include the Wolf Prize in Chemistry and the Arthur Cope Award. His approach to discovering new therapeutics guided many biotechnology companies that he founded, including Vertex Pharmaceuticals and Ariad Pharmaceuticals. He has founded or co-founded 14 biotechnology companies, which have developed 16 first-in-human approved drugs or advanced clinical candidates.

Early life

Schreiber was born on February 6, 1956, in Eatontown, NJ to Mary Geraldine (Gerrie) Schreiber (née Ardoin) and Lieutenant Colonel Thomas (Tom) Sewell Schreiber. From the ages of one to four he lived in a small village in France—Villennes-sur-Seine, about 30 kilometers west of Paris—with his family, where Tom Schreiber was stationed as a battalion commander at Supreme Headquarters Allied Powers Europe. [6] Shortly after returning to New Jersey, they moved to Fairfax, VA, where Tom Schreiber worked as an applied mathematician and physicist at Signal Corp on Fort Monmouth. At age 61, Schreiber discovered that Tom Schreiber was not his biological father. [7]

Schreiber attended Luther Jackson Junior High School in Falls Church, VA and graduated from Oakton High School in Fairfax, VA in 1973 after completing a 3-year work study program that prepared him for work in the construction field with on-the-job training and only a limited number of hours per week in the classroom, which he generally did not attend. [8] He did not take a chemistry class in high school.

Education and training

Schreiber obtained a Bachelor of Science degree in chemistry from the University of Virginia in 1977, after which he entered Harvard University as a graduate student in chemistry. He joined the research group of Robert B. Woodward and after Woodward's death continued his studies under the supervision of Yoshito Kishi. In 1980, he joined the faculty of Yale University as an assistant professor in chemistry, and in 1988 he moved to Harvard University as the Morris Loeb Professor. [9]

Work in 1980s and 1990s

Schreiber started his research work in organic synthesis, focusing on concepts such as the use of [2 + 2] photocycloadditions to establish stereochemistry in complex molecules, the fragmentation of hydroperoxides to produce macrolides, ancillary stereocontrol, group selectivity and two-directional synthesis. Notable accomplishments include the total syntheses of complex natural products such as periplanone B, talaromycin B, asteltoxin, avenaciolide, gloeosporone, hikizimicin, mycoticin A, epoxydictymene [10] and the immunosuppressant FK-506.[ citation needed ]

Following his work on the FK506-binding protein FKBP12 in 1988, Schreiber reported that the small molecules FK506 and cyclosporin inhibit the activity of the phosphatase calcineurin by forming the ternary complexes FKBP12-FK506-calcineurin and cyclophilin-ciclosporin-calcineurin. [11] This work, together with work by Gerald Crabtree at Stanford University concerning the NFAT proteins, led to the elucidation of the calcium-calcineurin-NFAT signaling pathway. [12] The Ras-Raf-MAPK pathway was not elucidated for another year.[ citation needed ]

In 1993, Schreiber and Crabtree developed bifunctional molecules or “chemical inducers of proximity” (CIPs), which provide small-molecule activation over numerous signaling molecules and pathways (e.g., the Fas, insulin, TGFβ and T-cell receptors [13] [14] ) through proximity effects. Schreiber and Crabtree demonstrated that small molecules could activate a signaling pathway in an animal with temporal and spatial control. [15] Dimerizer kits have been distributed freely resulting in many peer-reviewed publications. Its promise in gene therapy has been highlighted by the ability of a small molecule to activate a small-molecule regulated EPO receptor and to induce erythropoiesis (Ariad Pharmaceuticals, Inc.), and more recently in human clinical trials for treatment of graft-vs-host disease. [16]

In 1994, Schreiber and co-workers investigated (independently with David Sabitini) the master regulator of nutrient sensing, mTOR. They found that the small molecule rapamycin simultaneously binds FKBP12 and mTOR (originally named FKBP12-rapamycin binding protein, FRAP). [17] Using diversity-oriented synthesis and small-molecule screening, Schreiber illuminated the nutrient-response signaling network involving TOR proteins in yeast and mTOR in mammalian cells. Small molecules such as uretupamine [18] and rapamycin were shown to be particularly effective in revealing the ability of proteins such as mTOR, Tor1p, Tor2p, and Ure2p to receive multiple inputs and to process them appropriately towards multiple outputs (in analogy to multi-channel processors). Several pharmaceutical companies are now targeting the nutrient-signaling network for the treatment of several forms of cancer, including solid tumors. [19]

In 1995, Schreiber and co-workers found that the small molecule lactacystin binds and inhibits specific catalytic subunits of the proteasome, [20] a protein complex responsible for the bulk of proteolysis in the cell, as well as proteolytic activation of certain protein substrates. As a non-peptidic proteasome inhibitor lactacysin has proven useful in the study of proteasome function. Lactacystin modifies the amino-terminal threonine of specific proteasome subunits. This work helped to establish the proteasome as a mechanistically novel class of protease: an amino-terminal threonine protease. The work led to the use of bortezomib to treat multiple myeloma.[ citation needed ]

In 1996, Schreiber and co-workers used the small molecules trapoxin and depudecin to investigate the histone deacetylases (HDACs). [21] Prior to Schreiber's work in this area, the HDAC proteins had not been isolated. Coincident with the HDAC work, David Allis and colleagues reported work on the histone acetyltransferases (HATs). These two contributions catalyzed much research in this area, eventually leading to the characterization of numerous histone-modifying enzymes, their resulting histone “marks”, and numerous proteins that bind to these marks. By taking a global approach to understanding chromatin function, Schreiber proposed a “signaling network model” of chromatin and compared it to an alternative view, the “histone code hypothesis” presented by Strahl and Allis. [22] These studies shined a bright light on chromatin as a key gene expression regulatory element rather than simply a structural element used for DNA compaction.[ citation needed ]

Diversity-oriented synthesis

Schreiber applied small molecules to biology through the development of diversity-oriented synthesis (DOS), [23] chemical genetics, [24] and ChemBank. [25] Schreiber has shown that DOS can produce small molecules distributed in defined ways in chemical space by virtue of their different skeletons and stereochemistry, and that it can provide chemical handles on products anticipating the need for follow-up chemistry using, for example, combinatorial synthesis and the so-called Build/Couple/Pair strategy of modular chemical synthesis. DOS pathways and new techniques for small-molecule screening [26] [27] [28] provided many new, potentially disruptive insights into biology. Small-molecule probes of histone and tubulin deacetylases, transcription factors, cytoplasmic anchoring proteins, developmental signaling proteins (e.g., histacin, tubacin, haptamide, uretupamine, concentramide, and calmodulophilin), among many others, have been uncovered in the Schreiber lab using diversity-oriented synthesis and chemical genetics. Multidimensional screening was introduced in 2002 and has provided insights into tumorigenesis, cell polarity, and chemical space, among others. [29]

Using diversity-oriented synthesis, the Schreiber Lab and collaborators discovered numerous novel antimicrobial compounds including the bicyclic azetidine BRD7929 that could both cure and prevent the transmission of malaria in mice, targeting multiple steps in the life cycle of Plasmodium falciparum. [30] [31] They found another synthetic azetidine derivative, BRD4592, which kills Mycobacterium tuberculosis through allosteric inhibition of its tryptophan synthase. [32] High throughput screens further uncovered compounds that inhibit replication of Trypanosoma cruzi [33] and Hepatitis C virus, [34] [35] and inhibit Toxoplasma gondii growth. [36]

Other research

Schreiber also contributed to more conventional small molecule discovery projects. He collaborated with Tim Mitchison to discover monastrol – the first small-molecule inhibitor of mitosis that does not target tubulin. [37] Monastrol was shown to inhibit kinesin-5, a motor protein and was used to gain new insights into the functions of kinesin-5. This work led pharmaceutical company Merck, among others, to pursue anti-cancer drugs that target human kinesin-5.[ citation needed ]

Recently the Schreiber Lab discovered that when certain aggressive cancer cells become resistant to drug treatments, they also become vulnerable to ferroptosis—a natural cellular self-destruction mechanism triggered by peroxide and iron ions undergoing the Fenton reaction. Free radicals unleash a chain reaction turning normal lipids in the cell membrane into toxic radical species. They found that drug-resistant cancer cells that have acquired this new vulnerability rely on an enzyme called GPX4 for survival. GPX4 stops the chain reaction leading to ferroptosis by converting the dangerous lipid peroxides to benign alcohols. They further showed that a small molecule inhibitor of GPX4 kills cancer cells by increasing their vulnerability to ferroptosis. [38]

Impact on chemical biology

Schreiber has used small molecules to study three specific areas of biology, and then through the more general application of small molecules in biomedical research. Academic screening centers have been created that emulate the Harvard Institute of Chemistry and Cell Biology and the Broad Institute; in the U.S., there has been a nationwide effort to expand this capability via the government-sponsored NIH Road Map. Chemistry departments have changed their names to include the term chemical biology and new journals have been introduced (Cell Chemical Biology, ChemBioChem, Nature Chemical Biology, ACS Chemical Biology]) to cover the field. Schreiber has been involved in the founding of numerous biopharmaceutical companies whose research relies on chemical biology: Vertex Pharmaceuticals, Inc. (VRTX), Ariad Pharmaceuticals, Inc. (ARIA), Infinity Pharmaceuticals, Inc (INFI), Forma Therapeutics, H3 Biomedicine, Jnana Therapeutics, and Kojin Therapeutics. These companies have produced new therapeutics in several disease areas, including cystic fibrosis and cancer. [39]

Selected awards

Notes and references

  1. "Stuart L. Schreiber". chemistry.harvard.edu. Retrieved 2023-11-29.
  2. "Stuart L. Schreiber". Broad Institute. 2015-11-23. Retrieved 2023-11-29.
  3. "Stuart L. Schreiber, PhD | Investigator Emeriti Profile | 1994-2018 | HHMI". www.hhmi.org. Retrieved 2023-11-29.
  4. "Stuart L. Schreiber". www.nasonline.org. Retrieved 2023-11-29.
  5. "The National Academy of Medicine honors Stuart Schreiber". chemistry.harvard.edu. Retrieved 2023-11-29.
  6. "Find an object | Imperial War Museums". www.iwm.org.uk. Retrieved 2023-11-29.
  7. Schreiber, Stuart L. (July–August 2019). "Truth: A Love Story". Harvard Magazine. Retrieved November 29, 2023.
  8. Werth, Barry (1994). The Billion Dollar Molecule: One Company's quest for the perfect drug. United States of America: Simon & Schuster. pp. 197–198. ISBN   978-0671510572.
  9. "Department of Chemistry". chemistry.as.virginia.edu. Retrieved 2023-11-16.
  10. Jamison, Timothy F.; Shambayati, Soroosh; Crowe, William E.; Schreiber, Stuart L. (1994-06-01). "Cobalt-Mediated Total Synthesis of (+)-Epoxydictymene". Journal of the American Chemical Society. 116 (12): 5505–5506. doi:10.1021/ja00091a079. ISSN   0002-7863.
  11. Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL (August 1991). "Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes". Cell. 66 (4): 807–15. doi:10.1016/0092-8674(91)90124-H. PMID   1715244. S2CID   22094672.
  12. Schreiber SL, Crabtree GR (1995). "Immunophilins, ligands, and the control of signal transduction". Harvey Lectures. 91: 99–114. PMID   9127988.
  13. Yang J, Symes K, Mercola M, Schreiber SL (January 1998). "Small-molecule control of insulin and PDGF receptor signaling and the role of membrane attachment". Current Biology. 8 (1): 11–8. doi: 10.1016/S0960-9822(98)70015-6 . PMID   9427627. S2CID   18682114.
  14. Stockwell BR, Schreiber SL (June 1998). "Probing the role of homomeric and heteromeric receptor interactions in TGF-beta signaling using small molecule dimerizers". Current Biology. 8 (13): 761–70. doi: 10.1016/S0960-9822(98)70299-4 . PMID   9651680. S2CID   93779.
  15. "Functional Analysis of Fas Signaling in vivo Using Synthetic Dimerizers" David Spencer, Pete Belshaw, Lei Chen, Steffan Ho, Filippo Randazzo, Gerald R. Crabtree, Stuart L. Schreiber Curr. Biol. 1996, 6, 839–848.
  16. Di Stasi, Antonio; Tey, Siok-Keen; Dotti, Gianpietro; Fujita, Yuriko; Kennedy-Nasser, Alana; Martinez, Caridad; Straathof, Karin; Liu, Enli; Durett, April G. (2011-11-03). "Inducible Apoptosis as a Safety Switch for Adoptive Cell Therapy". New England Journal of Medicine. 365 (18): 1673–1683. doi:10.1056/nejmoa1106152. ISSN   0028-4793. PMC   3236370 . PMID   22047558.
  17. Brown EJ, Albers MW, Shin TB, et al. (June 1994). "A mammalian protein targeted by G1-arresting rapamycin-receptor complex". Nature. 369 (6483): 756–8. Bibcode:1994Natur.369..756B. doi:10.1038/369756a0. PMID   8008069. S2CID   4359651.
  18. "Dissection of a glucose-sensitive pathway of the nutrient-response network using diversity-oriented synthesis and small molecule microarrays" Finny G. Kuruvilla, Alykhan F. Shamji, Scott M. Sternson, Paul J. Hergenrother, Stuart L. Schreiber, Nature, 2002, 416, 653–656.
  19. Shamji AF, Nghiem P, Schreiber SL (August 2003). "Integration of growth factor and nutrient signaling: implications for cancer biology". Molecular Cell. 12 (2): 271–80. doi: 10.1016/j.molcel.2003.08.016 . PMID   14536067.
  20. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995). "Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin". Science. 268 (5211): 726–31. Bibcode:1995Sci...268..726F. doi:10.1126/science.7732382. PMID   7732382. S2CID   37779687.
  21. Taunton J, Hassig CA, Schreiber SL (April 1996). "A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p". Science. 272 (5260): 408–11. Bibcode:1996Sci...272..408T. doi:10.1126/science.272.5260.408. PMID   8602529. S2CID   25717734.
  22. Schreiber SL, Bernstein BE (December 2002). "Signaling network model of chromatin". Cell. 111 (6): 771–8. doi: 10.1016/S0092-8674(02)01196-0 . PMID   12526804. S2CID   8824652.
  23. (a) Schreiber SL (March 2000). "Target-oriented and diversity-oriented organic synthesis in drug discovery". Science. 287 (5460): 1964–9. Bibcode:2000Sci...287.1964S. doi:10.1126/science.287.5460.1964. PMID   10720315. S2CID   42413249. (b) Burke MD, Berger EM, Schreiber SL (October 2003). "Generating diverse skeletons of small molecules combinatorially". Science. 302 (5645): 613–8. Bibcode:2003Sci...302..613B. doi:10.1126/science.1089946. PMID   14576427. S2CID   6168881. (c) Burke MD, Schreiber SL (January 2004). "A planning strategy for diversity-oriented synthesis". Angewandte Chemie. 43 (1): 46–58. doi:10.1002/anie.200300626. PMID   14694470.
  24. "The small-molecule approach to biology: Chemical genetics and diversity-oriented organic synthesis make possible the systematic exploration of biology”, S L Schreiber, C&E News, 2003, 81, 51–61.
  25. Strausberg RL, Schreiber SL (April 2003). "From knowing to controlling: a path from genomics to drugs using small molecule probes". Science. 300 (5617): 294–5. Bibcode:2003Sci...300..294S. doi:10.1126/science.1083395. PMID   12690189. S2CID   39877841.
  26. Stockwell BR, Haggarty SJ, Schreiber SL (February 1999). "High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications". Chemistry & Biology. 6 (2): 71–83. doi: 10.1016/S1074-5521(99)80004-0 . PMID   10021420.
  27. "Printing Small Molecules as Microarrays and Detecting Protein-Ligand Interactions en Masse" Gavin MacBeath, Angela N. Koehler, Stuart L. Schreiber J. Am. Chem. Soc.1999, 121, 7967–7968.
  28. MacBeath G, Schreiber SL (September 2000). "Printing proteins as microarrays for high-throughput function determination". Science. 289 (5485): 1760–3. Bibcode:2000Sci...289.1760M. doi:10.1126/science.289.5485.1760. PMID   10976071. S2CID   27553611.
  29. Schreiber SL (July 2005). "Small molecules: the missing link in the central dogma". Nature Chemical Biology. 1 (2): 64–6. doi:10.1038/nchembio0705-64. PMID   16407997. S2CID   14399359.
  30. Kato, Nobutaka; Comer, Eamon; Sakata-Kato, Tomoyo; Sharma, Arvind; Sharma, Manmohan; Maetani, Micah; Bastien, Jessica; Brancucci, Nicolas M.; Bittker, Joshua A.; Corey, Victoria; Clarke, David; Derbyshire, Emily R.; Dornan, Gillian L.; Duffy, Sandra; Eckley, Sean (2016-10-20). "Diversity-oriented synthesis yields novel multistage antimalarial inhibitors". Nature. 538 (7625): 344–349. Bibcode:2016Natur.538..344K. doi:10.1038/nature19804. ISSN   1476-4687. PMC   5515376 . PMID   27602946.
  31. Sharma, Manmohan; Mutharasappan, Nachiappan; Manickam, Yogavel; Harlos, Karl; Melillo, Bruno; Comer, Eamon; Tabassum, Heena; Parvez, Suhel; Schreiber, Stuart L.; Sharma, Amit (2022-07-07). "Inhibition of Plasmodium falciparum phenylalanine tRNA synthetase provides opportunity for antimalarial drug development". Structure. 30 (7): 962–972.e3. doi: 10.1016/j.str.2022.03.017 . ISSN   1878-4186. PMID   35460612.
  32. Wellington, Samantha; Nag, Partha P.; Michalska, Karolina; Johnston, Stephen E.; Jedrzejczak, Robert P.; Kaushik, Virendar K.; Clatworthy, Anne E.; Siddiqi, Noman; McCarren, Patrick; Bajrami, Besnik; Maltseva, Natalia I.; Combs, Senya; Fisher, Stewart L.; Joachimiak, Andrzej; Schreiber, Stuart L. (September 2017). "A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase". Nature Chemical Biology. 13 (9): 943–950. doi:10.1038/nchembio.2420. ISSN   1552-4469. PMC   6886523 . PMID   28671682.
  33. Germain, Andrew R.; Carmody, Leigh C.; Dockendorff, Chris; Galan-Rodriguez, Cristina; Rodriguez, Ana; Johnston, Stephen; Bittker, Joshua A.; MacPherson, Lawrence; Dandapani, Sivaraman; Palmer, Michelle; Schreiber, Stuart L.; Munoz, Benito (2011-12-01). "Identification of small-molecule inhibitors of Trypansoma cruzi replication". Bioorganic & Medicinal Chemistry Letters. 21 (23): 7197–7200. doi:10.1016/j.bmcl.2011.09.057. ISSN   1464-3405. PMID   22018462.
  34. Kim, Sun Suk; Peng, Lee F.; Lin, Wenyu; Choe, Won-Hyeok; Sakamoto, Naoya; Kato, Nobuyuki; Ikeda, Masanori; Schreiber, Stuart L.; Chung, Raymond T. (January 2007). "A cell-based, high-throughput screen for small molecule regulators of hepatitis C virus replication". Gastroenterology. 132 (1): 311–320. doi:10.1053/j.gastro.2006.10.032. ISSN   0016-5085. PMID   17241881.
  35. Peng, Lee F.; Schaefer, Esperance A. K.; Maloof, Nicole; Skaff, Andrew; Berical, Andrew; Belon, Craig A.; Heck, Julie A.; Lin, Wenyu; Frick, David N.; Allen, Todd M.; Miziorko, Henry M.; Schreiber, Stuart L.; Chung, Raymond T. (2011-08-15). "Ceestatin, a novel small molecule inhibitor of hepatitis C virus replication, inhibits 3-hydroxy-3-methylglutaryl-coenzyme A synthase". The Journal of Infectious Diseases. 204 (4): 609–616. doi:10.1093/infdis/jir303. ISSN   1537-6613. PMC   3144167 . PMID   21791663.
  36. Radke, Joshua B.; Carey, Kimberly L.; Shaw, Subrata; Metkar, Shailesh R.; Mulrooney, Carol; Gale, Jennifer P.; Bittker, Joshua A.; Hilgraf, Robert; Comer, Eamon; Schreiber, Stuart L.; Virgin, Herbert W.; Perez, Jose R.; Sibley, L. David (2018-10-12). "High Throughput Screen Identifies Interferon γ-Dependent Inhibitors of Toxoplasma gondii Growth". ACS Infectious Diseases. 4 (10): 1499–1507. doi:10.1021/acsinfecdis.8b00135. ISSN   2373-8227. PMC   6200635 . PMID   30058798.
  37. Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ (October 1999). "Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen". Science. 286 (5441): 971–4. doi:10.1126/science.286.5441.971. PMID   10542155.
  38. Viswanathan, Vasanthi S.; Ryan, Matthew J.; Dhruv, Harshil D.; Gill, Shubhroz; Eichhoff, Ossia M.; Seashore-Ludlow, Brinton; Kaffenberger, Samuel D.; Eaton, John K.; Shimada, Kenichi; Aguirre, Andrew J.; Viswanathan, Srinivas R.; Chattopadhyay, Shrikanta; Tamayo, Pablo; Yang, Wan Seok; Rees, Matthew G. (2017-07-27). "Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway". Nature. 547 (7664): 453–457. doi:10.1038/nature23007. ISSN   1476-4687. PMC   5667900 . PMID   28678785.
  39. Wainwright, Claire E.; Elborn, J. Stuart; Ramsey, Bonnie W.; Marigowda, Gautham; Huang, Xiaohong; Cipolli, Marco; Colombo, Carla; Davies, Jane C.; De Boeck, Kris (2015-07-16). "Lumacaftor–Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR". New England Journal of Medicine. 373 (3): 220–231. doi:10.1056/NEJMoa1409547. ISSN   0028-4793. PMC   4764353 . PMID   25981758.
  40. "National Academy of Medicine Elects 85 New Members". National Academy of Medicine. 15 October 2018. Retrieved 2 May 2019.

Further reading

Related Research Articles

<span class="mw-page-title-main">Proteasome</span> Protein complexes which degrade unnecessary or damaged proteins by proteolysis

Proteasomes are protein complexes which degrade unneeded or damaged proteins by proteolysis, a chemical reaction that breaks peptide bonds. Enzymes that help such reactions are called proteases.

<span class="mw-page-title-main">Ubiquitin</span> Regulatory protein found in most eukaryotic tissues

Ubiquitin is a small regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ubiquitously. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Four genes in the human genome code for ubiquitin: UBB, UBC, UBA52 and RPS27A.

<span class="mw-page-title-main">Kinase</span> Enzyme catalyzing transfer of phosphate groups onto specific substrates

In biochemistry, a kinase is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule donates a phosphate group to the substrate molecule. This transesterification produces a phosphorylated substrate and ADP. Conversely, it is referred to as dephosphorylation when the phosphorylated substrate donates a phosphate group and ADP gains a phosphate group. These two processes, phosphorylation and dephosphorylation, occur four times during glycolysis.

<span class="mw-page-title-main">Calcineurin</span> Class of enzymes

Calcineurin (CaN) is a calcium and calmodulin dependent serine/threonine protein phosphatase. It activates the T cells of the immune system and can be blocked by drugs. Calcineurin activates nuclear factor of activated T cell cytoplasmic (NFATc), a transcription factor, by dephosphorylating it. The activated NFATc is then translocated into the nucleus, where it upregulates the expression of interleukin 2 (IL-2), which, in turn, stimulates the growth and differentiation of the T cell response. Calcineurin is the target of a class of drugs called calcineurin inhibitors, which include ciclosporin, voclosporin, pimecrolimus and tacrolimus.

<span class="mw-page-title-main">Histone deacetylase</span> Class of enzymes important in regulating DNA transcription

Histone deacetylases (EC 3.5.1.98, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on both histone and non-histone proteins. HDACs allow histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. HDAC's action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins. In general, they suppress gene expression.

<span class="mw-page-title-main">Chemical biology</span> Scientific discipline

Chemical biology is a scientific discipline between the fields of chemistry and biology. The discipline involves the application of chemical techniques, analysis, and often small molecules produced through synthetic chemistry, to the study and manipulation of biological systems. Although often confused with biochemistry, which studies the chemistry of biomolecules and regulation of biochemical pathways within and between cells, chemical biology remains distinct by focusing on the application of chemical tools to address biological questions.

mTOR Mammalian protein found in humans

The mammalian target of rapamycin (mTOR), also referred to as the mechanistic target of rapamycin, and sometimes called FK506-binding protein 12-rapamycin-associated protein 1 (FRAP1), is a kinase that in humans is encoded by the MTOR gene. mTOR is a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases.

In molecular biology, immunophilins are endogenous cytosolic peptidyl-prolyl isomerases (PPI) that catalyze the interconversion between the cis and trans isomers of peptide bonds containing the amino acid proline (Pro). They are chaperone molecules that generally assist in the proper folding of diverse "client" proteins. Immunophilins are traditionally classified into two families that differ in sequence and biochemical characteristics. These two families are: "cyclosporin-binding cyclophilins (CyPs)" and "FK506-binding proteins (FKBPs)". In 2005, a group of dual-family immunophilins (DFI) has been discovered, mostly in unicellular organisms; these DFIs are natural chimera of CyP and FKBPs, fused in either order.

<span class="mw-page-title-main">FKBP</span>

The FKBPs, or FK506 binding proteins, constitute a family of proteins that have prolyl isomerase activity and are related to the cyclophilins in function, though not in amino acid sequence. FKBPs have been identified in many eukaryotes, ranging from yeast to humans, and function as protein folding chaperones for proteins containing proline residues. Along with cyclophilin, FKBPs belong to the immunophilin family.

<span class="mw-page-title-main">Lactacystin</span> Chemical compound

Lactacystin is an organic compound naturally synthesized by bacteria of the genus Streptomyces first identified as an inducer of neuritogenesis in neuroblastoma cells in 1991. The target of lactacystin was subsequently found to be the proteasome on the basis of its affinity for certain catalytic subunits of the proteasome by Fenteany and co-workers in 1995. The proteasome is a protein complex responsible for the bulk of proteolysis in the cell, as well as proteolytic activation of certain protein substrates. Lactacystin was the first non-peptidic proteasome inhibitor discovered and is widely used as a research tool in biochemistry and cell biology. The transformation product of lactacystin clasto-lactacystin β-lactone covalently modifies the amino-terminal threonine of specific catalytic subunits of the proteasome, a discovery that helped to establish the proteasome as a mechanistically novel class of protease: an amino-terminal threonine protease. The molecule is commonly used in biochemistry and cell biology laboratories as a selective inhibitor of the proteasome. The first total synthesis of lactacystin was developed in 1992 by Corey and Reichard, and a number of other syntheses of this molecule have also been published. There are more than 1,660 entries for lactacystin in PubMed as of January 2019.

<span class="mw-page-title-main">ADP-ribosylation</span> Addition of one or more ADP-ribose moieties to a protein.

ADP-ribosylation is the addition of one or more ADP-ribose moieties to a protein. It is a reversible post-translational modification that is involved in many cellular processes, including cell signaling, DNA repair, gene regulation and apoptosis. Improper ADP-ribosylation has been implicated in some forms of cancer. It is also the basis for the toxicity of bacterial compounds such as cholera toxin, diphtheria toxin, and others.

<span class="mw-page-title-main">Histone deacetylase 2</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 2 (HDAC2) is an enzyme that in humans is encoded by the HDAC2 gene. It belongs to the histone deacetylase class of enzymes responsible for the removal of acetyl groups from lysine residues at the N-terminal region of the core histones. As such, it plays an important role in gene expression by facilitating the formation of transcription repressor complexes and for this reason is often considered an important target for cancer therapy.

<span class="mw-page-title-main">FKBP1A</span> Protein and coding gene in humans

Peptidyl-prolyl cis-trans isomerase FKBP1A is an enzyme that in humans is encoded by the FKBP1A gene. It is also commonly referred to as FKBP-12 or FKBP12 and is a member of a family of FK506-binding proteins (FKBPs).

<span class="mw-page-title-main">Chemically induced dimerization</span>

Chemically induced dimerization (CID) is a biological mechanism in which two proteins bind only in the presence of a certain small molecule, enzyme or other dimerizing agent. Genetically engineered CID systems are used in biological research to control protein localization, to manipulate signalling pathways and to induce protein activation.

Gerald R. Crabtree is the David Korn Professor at Stanford University and an Investigator in the Howard Hughes Medical Institute. He is known for defining the Ca2+-calcineurin-NFAT signaling pathway, pioneering the development of synthetic ligands for regulation of biologic processes and discovering chromatin regulatory mechanisms involved in cancer and brain development. He is a founder of Ariad Pharmaceuticals, Amplyx Pharmaceuticals, and Foghorn Therapeutics.

mTORC1 Protein complex

mTORC1, also known as mammalian target of rapamycin complex 1 or mechanistic target of rapamycin complex 1, is a protein complex that functions as a nutrient/energy/redox sensor and controls protein synthesis.

<i>O</i>-GlcNAc

O-GlcNAc is a reversible enzymatic post-translational modification that is found on serine and threonine residues of nucleocytoplasmic proteins. The modification is characterized by a β-glycosidic bond between the hydroxyl group of serine or threonine side chains and N-acetylglucosamine (GlcNAc). O-GlcNAc differs from other forms of protein glycosylation: (i) O-GlcNAc is not elongated or modified to form more complex glycan structures, (ii) O-GlcNAc is almost exclusively found on nuclear and cytoplasmic proteins rather than membrane proteins and secretory proteins, and (iii) O-GlcNAc is a highly dynamic modification that turns over more rapidly than the proteins which it modifies. O-GlcNAc is conserved across metazoans.

Craig M. Crews is an American scientist at Yale University known for his contributions to chemical biology. He is known for his contributions to the field of induced proximity through his work in creating heterobifunctional molecules that hijack cellular processes by inducing the interaction of two proteins inside a living cell. His initial work focused on the discovery of PROteolysis-TArgeting Chimeras (PROTACs) to trigger degradation of disease-causing proteins, a process known as targeted protein degradation (TPD), and he has since developed new versions of -TACs to leverage other cellular processes and protein families to treat disease.

<span class="mw-page-title-main">FK1012</span> Dimer for protein manipulation

FK1012 is a dimer consisting of two molecules of tacrolimus (FK506) linked via their vinyl groups. It is used as a research tool in chemically induced dimerization applications. FK1012 is a chemical inducer of dimerization (CID) which makes the protein capable of dimerization or oligomerization of fusion proteins containing one or more FKBP12 domains. It is used in pharmacology to act as a mediator in the formation of FK506 dimer. FK506 binding proteins (FKBPs) do not normally form dimers but can be caused to dimerize in the presence of FK1012. Genetically engineered proteins based on FKBPs can be used to manipulate protein localization, signaling pathways and protein activation.

<span class="mw-page-title-main">Bump and hole</span>

The bump-and-hole method is a tool in chemical genetics for studying a specific isoform in a protein family without perturbing the other members of the family. The unattainability of isoform-selective inhibition due to structural homology in protein families is a major challenge of chemical genetics. With the bump-and-hole approach, a protein–ligand interface is engineered to achieve selectivity through steric complementarity while maintaining biochemical competence and orthogonality to the wild type pair. Typically, a "bumped" ligand/inhibitor analog is designed to bind a corresponding "hole-modified" protein. Bumped ligands are commonly bulkier derivatives of a cofactor of the target protein. Hole-modified proteins are recombinantly expressed with an amino acid substitution from a larger to smaller residue, e.g. glycine or alanine, at the cofactor binding site. The designed ligand/inhibitor has specificity for the engineered protein due to steric complementarity, but not the native counterpart due to steric interference.