Gordon Hammes

Last updated
Gordon Hammes
Born1934 (age 8889)
NationalityAmerican
Alma mater Princeton University
Known forEnzyme kinetics and mechanism
AwardsMcKay Prize, ACS Award in Biological Chemistry
Scientific career
Fields Biochemistry
Institutions Duke University

Gordon G. Hammes (born 1934 in Fond du Lac, Wisconsin) is a distinguished service professor of biochemistry, emeritus, at Duke University, professor emeritus at Cornell University, and member of United States National Academy of Sciences. Hammes' research involves the study of enzyme mechanisms and enzyme regulation. [1]

Contents

Early life and education

Hammes was born in Fond du Lac, Wisconsin in 1934. He earned his B.A. from Princeton University in 1956 and his Ph.D. from the University of Wisconsin-Madison in 1959. [1]

Career

Hammes conducted postdoctoral research with Manfred Eigen at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany. He then secured a faculty position at the Massachusetts Institute of Technology before moving to Cornell University in 1965, where he was professor and chair of the department of chemistry. At Cornell University, he was the Horace White Professor of Chemistry and Biochemistry, as well the director and co-founder of the Cornell University Biotechnology Program. He spent some time at the University of California, Santa Barbara as vice-chancellor for academic affairs, and then joined the biochemistry faculty at Duke University in 1991. [1] He served as vice chancellor of academic affairs at the Duke University Medical Center from 1991 through 1998. [2] [3]

Hammes was editor-in-chief of the American Chemical Society journal Biochemistry from 1992 until 2003, and president of the American Society for Biochemistry and Molecular Biology starting in 1994. [1] [4] The Gordon Hammes ACS Biochemistry Lectureship was established in 2009 in order to honor significant contributions to the field of biochemistry. [5]

Rsearch papers

Dr. Hammes is a world leader in the field of enzyme mechanisms and regulation, starting with work with Eigen on the temperature-jump technique [6] [7] and with Robert Alberty on relaxation spectra. [8] He studied the kinetic behavior of various enzymes, including glutamate-aspartate transaminase, [9] [10] hexokinase, [11] [12] [13] and ribonuclease. [14] He developed new methodologies that allowed a better understanding of enzyme catalysis, [15] including fast reaction techniques, [6] [7] fluorescence spectroscopy, and single molecule microscopy. [16] [17] He was also one of the first to develop fluorescence energy transfer (FRET) as a technology to study distances between and within proteins. [17] His work revolutionized the understanding of conformational changes and multiple intermediates in enzyme catalysis. Dr. Hammes has published more than 250 scientific articles.

Books

Books written by Hammes include the following:

Thermodynamics and Kinetics for the Biological Sciences (2000) [18]
Spectroscopy for the Biological Sciences (2005) [19]
Physical Chemistry for the Biological Sciences (2015) with his daughter Sharon Hammes-Schiffer [20]

Awards and distinctions

Related Research Articles

<span class="mw-page-title-main">Enzyme</span> Large biological molecule that acts as a catalyst

Enzymes are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called enzymology and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties.

<span class="mw-page-title-main">Binding site</span> Molecule-specific coordinate bonding area in biological systems

In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. The binding partner of the macromolecule is often referred to as a ligand. Ligands may include other proteins, enzyme substrates, second messengers, hormones, or allosteric modulators. The binding event is often, but not always, accompanied by a conformational change that alters the protein's function. Binding to protein binding sites is most often reversible, but can also be covalent reversible or irreversible.

<span class="mw-page-title-main">Molecular motor</span> Biological molecular machines

Molecular motors are natural (biological) or artificial molecular machines that are the essential agents of movement in living organisms. In general terms, a motor is a device that consumes energy in one form and converts it into motion or mechanical work; for example, many protein-based molecular motors harness the chemical free energy released by the hydrolysis of ATP in order to perform mechanical work. In terms of energetic efficiency, this type of motor can be superior to currently available man-made motors. One important difference between molecular motors and macroscopic motors is that molecular motors operate in the thermal bath, an environment in which the fluctuations due to thermal noise are significant.

<span class="mw-page-title-main">Enzyme kinetics</span> Study of biochemical reaction rates catalysed by an enzyme

Enzyme kinetics is the study of the rates of enzyme-catalysed chemical reactions. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme's kinetics in this way can reveal the catalytic mechanism of this enzyme, its role in metabolism, how its activity is controlled, and how a drug or a modifier might affect the rate.

<span class="mw-page-title-main">Robert A. Alberty</span> American chemist (1921–2014)

Robert Arnold Alberty (1921–2014) was an American biophysical chemist, professor emeritus at the Massachusetts Institute of Technology, and a member of the National Academy of Sciences.

<span class="mw-page-title-main">Frank Westheimer</span> American chemist

Frank Henry Westheimer was an American chemist. He taught at the University of Chicago from 1936 to 1954, and at Harvard University from 1953 to 1983, becoming the Morris Loeb Professor of Chemistry in 1960, and Professor Emeritus in 1983. The Westheimer medal was established in his honor in 2002.

<span class="mw-page-title-main">Enzyme catalysis</span> Catalysis of chemical reactions by specialized proteins known as enzymes

Enzyme catalysis is the increase in the rate of a process by a biological molecule, an "enzyme". Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.

<span class="mw-page-title-main">Ronald T. Raines</span>

Ronald T. Raines is an American chemical biologist. He is the Roger and Georges Firmenich Professor of Natural Products Chemistry at the Massachusetts Institute of Technology. He is known for using ideas and methods of physical organic chemistry to solve important problems in biology.

<span class="mw-page-title-main">W. Wallace Cleland</span>

William Wallace Cleland (January 6, 1930 – March 6, 2013, often cited as W. W. Cleland, and known almost universally as "Mo Cleland", was a University of Wisconsin-Madison biochemistry professor. His research was concerned with enzyme reaction mechanism and enzyme kinetics, especially multiple-substrate enzymes. He was elected to the National Academy of Sciences in 1985.

Myron Lee Bender (1924–1988) was born in St. Louis, Missouri. He obtained his B.S. (1944) and his Ph.D. (1948) from Purdue University. The latter was under the direction of Henry B. Hass. After postdoctoral research under Paul D. Barlett, and Frank H. Westheimer, he spent one year as a faculty member at the University of Connecticut. Thereafter, he was a professor of Chemistry at Illinois Institute of Technology in 1951, and then at Northwestern University in 1960. He worked primarily in the study of reaction mechanisms and the biochemistry of enzyme action. Myron L. Bender demonstrated the two-step mechanism of catalysis for serine proteases, nucleophilic catalysis in ester hydrolysis and intramolecular catalysis in water. He also showed that cyclodextrin can be used to investigate catalysis of organic reactions within the scope of host–guest chemistry. Finally, he and others reported on the synthesis of an organic compound as a model of an acylchymotrypsin intermediate.

<span class="mw-page-title-main">Diffusion-limited enzyme</span> Enzyme rate limited by diffusion

A diffusion-limited enzyme catalyses a reaction so efficiently that the rate limiting step is that of substrate diffusion into the active site, or product diffusion out. This is also known as kinetic perfection or catalytic perfection. Since the rate of catalysis of such enzymes is set by the diffusion-controlled reaction, it therefore represents an intrinsic, physical constraint on evolution. Diffusion limited perfect enzymes are very rare. Most enzymes catalyse their reactions to a rate that is 1,000-10,000 times slower than this limit. This is due to both the chemical limitations of difficult reactions, and the evolutionary limitations that such high reaction rates do not confer any extra fitness.

Jeremy Randall Knowles was a professor of chemistry at Harvard University who served as dean of the Harvard University faculty of arts and sciences (FAS) from 1991 to 2002. He joined Harvard in 1974, received many awards for his research, and remained at Harvard until his death, leaving the faculty for a decade to serve as Dean. Knowles died on 3 April 2008 at his home.

<span class="mw-page-title-main">Stephen J. Benkovic</span> American chemist

Stephen James Benkovic is an American chemist known for his contributions to the field of enzymology. He holds the Evan Pugh University Professorship and Eberly Chair in Chemistry at The Pennsylvania State University. He has developed boron compounds that are active pharmacophores against a variety of diseases. Benkovic has concentrated on the assembly and kinetic attributes of the enzymatic machinery that performs DNA replication, DNA repair, and purine biosynthesis.

Thomas C. Bruice was a professor of chemistry and biochemistry at University of California, Santa Barbara. He was elected to the National Academy of Sciences in 1974. He was a pioneering researcher in the area of chemical biology, and is one of the 50 most cited chemists.

Sharon Hammes-Schiffer is a physical chemist who has contributed to theoretical and computational chemistry. She is currently a Sterling Professor of Chemistry at Yale University. She has served as senior editor and deputy editor of the Journal of Physical Chemistry and advisory editor for Theoretical Chemistry Accounts. As of 1 January 2015 she is editor-in-chief of Chemical Reviews.

<span class="mw-page-title-main">Judith Klinman</span> American biochemist

Judith P. Klinman is an American chemist, biochemist, and molecular biologist known for her work on enzyme catalysis. She became the first female professor in the physical sciences at the University of California, Berkeley in 1978, where she is now Professor of the Graduate School and Chancellor's Professor. In 2012, she was awarded the National Medal of Science by President Barack Obama. She is a member of the National Academy of Sciences, American Academy of Arts and Sciences, American Association for the Advancement of Science, and the American Philosophical Society.

<span class="mw-page-title-main">Nils G. Walter</span> Professor of Chemistry, Biophysics, and Biological Chemistry

Nils G. Walter, Dr. Ing., is the Francis S. Collins Collegiate Professor of Chemistry, Biophysics, and Biological Chemistry at the University of Michigan, Ann Arbor. Research in the Nils Walter Lab focuses on non-coding RNA through the lens of single molecule techniques. He is the Founding Director of the Single Molecule Analysis in real-Time (SMART) Center at Michigan. In addition, Walter is the Founding Co-Director for the University of Michigan Center for RNA Biomedicine whose mission is to enrich the university’s intellectual and training environment around RNA Biomedicine. He is currently an Associate Director for the Michigan Post-baccalaureate Research Education Program (PREP).

<span class="mw-page-title-main">Athel Cornish-Bowden</span> British biochemist

Athel Cornish-Bowden is a British biochemist known for his numerous textbooks, particularly those on enzyme kinetics and his work on metabolic control analysis.

Gabriela S. Schlau-Cohen is a Thomas D. and Virginia W. Cabot Career Development Associate Professor at MIT in the Department of Chemistry.

John P. Richard is a chemist and academic. He is a SUNY Distinguished Professor at the University at Buffalo.

References

  1. 1 2 3 4 5 6 7 "ASBMB Past Presidents". American Society for Biochemistry and Molecular Biology. Retrieved 3 May 2012.
  2. "Marchuk Selected for 2010 Gordon G. Hammes Faculty Teaching Award". Duke Department of Molecular Genetics and Microbiology. Archived from the original on 10 October 2011. Retrieved 3 May 2012.
  3. "Guide to the Gordon G. Hammes Papers and Records, 1987–2008". Duke Medical Center Library & Archives. Retrieved 3 May 2012.
  4. "Gordon Hammes". Naples Music Club. Retrieved 3 May 2012.
  5. "Gordon Hammes ACS Biochemistry Lectureship" (PDF). American Chemical Society. Retrieved 3 May 2012.
  6. 1 2 Eigen, Manfred; Hammes, Gordon G. (1960). "Kinetic Studies of ADP Reactions with the Temperature Jump Method". Journal of the American Chemical Society. 82 (22): 5951–5952. doi:10.1021/ja01507a041.
  7. 1 2 Eigen, Manfred; Hammes, Gordon G. (1961). "Kinetic Studies of ADP Reactions with the Temperature Jump Method—Corrections". Journal of the American Chemical Society. 83 (12): 2786. doi:10.1021/ja01473a056.
  8. Hammes, Gordon G.; Alberty, Robert A. (1960). "The Relaxation Spectra of Simple Enzymatic Mechanisms". Journal of the American Chemical Society. 82 (7): 1564–1569. doi:10.1021/ja01492a012.
  9. Hammes, Gordon G.; Fasella, Paolo. (1962). "A Kinetic Study of Glutamic-Aspartic Transaminase". Journal of the American Chemical Society. 84 (24): 4644–4650. doi:10.1021/ja00883a006.
  10. Fasella, Paolo; Giartosio, Anna; Hammes, Gordon G. (1966). "The Interaction of Aspartate Aminotransferase with α-Methylaspartic Acid". Biochemistry. 5 (1): 197–202. doi:10.1021/bi00865a026. PMID   5938937.
  11. Hammes, Gordon G.; Kochavi, Daniel. (1962). "Studies of the Enzyme Hexokinase. I. Steady State Kinetics at pH 8". Journal of the American Chemical Society. 84 (11): 2069–2073. doi:10.1021/ja00870a012.
  12. Hammes, Gordon G.; Kochavi, Daniel. (1962). "Studies of the Enzyme Hexokinase. II. Kinetic Inhibition by Products". Journal of the American Chemical Society. 84 (11): 2073–2076. doi:10.1021/ja00870a013.
  13. Hammes, Gordon G.; Kochavi, Daniel. (1962). "Studies of the Enzyme Hexokinase. III. The Role of the Metal Ion". Journal of the American Chemical Society. 84 (11): 2076–2079. doi:10.1021/ja00870a014.
  14. Cathou, Renata E.; Hammes, Gordon G. (1964). "Relaxation Spectra of Ribonuclease". Berichte der Bunsengesellschaft für Physikalische Chemie. 68 (8–9): 759–760. doi:10.1002/bbpc.19640680818.
  15. Fasella, Paolo; Hammes, Gordon G.; Schimmel, Paul R. (1965). "A Sephadex dialysis method of determining small molecule-macromolecule binding constants". Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis. 103 (4): 708–710. doi:10.1016/0005-2787(65)90094-8. PMID   5859855.
  16. Smiley, R. D.; Collins, T. R. L.; Hammes, G. G.; Hsieh, T.-S. (2007). "Single-molecule measurements of the opening and closing of the DNA gate by eukaryotic topoisomerase II". Proceedings of the National Academy of Sciences. 104 (12): 4840–4845. Bibcode:2007PNAS..104.4840S. doi: 10.1073/pnas.0700342104 . PMC   1829226 . PMID   17360343.
  17. 1 2 Antikainen, Nina M.; Smiley, R. Derike; Benkovic, Stephen J.; Hammes, Gordon G. (2005). "Conformation Coupled Enzyme Catalysis: Single-Molecule and Transient Kinetics Investigation of Dihydrofolate Reductase". Biochemistry. 44 (51): 16835–16843. doi:10.1021/bi051378i. PMID   16363797.
  18. Hammes, Gordon G. (2000). Thermodynamics and Kinetics for the Biological Sciences. New York: Wiley-Interscience. ISBN   0-471-37491-1.
  19. Hammes, Gordon G. (2005). Spectroscopy for the Biological Sciences. ISBN   978-0471713449.
  20. Hammes, Gordon G.; Hammes-Schiffer, Sharon (2015). Physical Chemistry for the Biological Sciences. ISBN   978-1118859001.