Charles Cantor

Last updated
Charles R. Cantor
Born (1942-08-26) August 26, 1942 (age 80)
Nationality American
Alma mater Columbia University (BA)
University of California, Berkeley (PhD)
Known for Pulse field gel electrophoresis
Scientific career
Fields Molecular genetics
Institutions Columbia University
University of California, Berkeley
Doctoral advisor Ignacio Tinoco Jr.

Charles R. Cantor [1] (born 26 August 1942) is an American molecular geneticist who, in conjunction with David Schwartz, developed pulse field gel electrophoresis for very large DNA molecules. [2] Cantor's three-volume book, Biophysical Chemistry [3] [4] [5] co-authored with Paul Schimmel, was an influential textbook in the 1980s and 1990s.

Contents

Career

Charles Cantor received his AB from Columbia University in 1963 and PhD from University of California, Berkeley in 1966. [1]

He is Director of the Center for Advanced Biotechnology at Boston University. [6] While on a two-year sabbatical acting as Chief Scientific Officer at Sequenom, Inc. he maintained his research laboratory at Boston University. He is also a co-founder and Director of Retrotope, a US-based company using heavier isotopes of carbon (13C) and hydrogen (2H, deuterium) to stabilize essential compounds like amino acids, nucleic acids and lipids to target age-related diseases. [7] [8]

Cantor held positions at Columbia University (1981–1989) [9] and the University of California, Berkeley (1989–1992), [9] before moving to Boston University in 1992. [9] In 2017 he became Professor Adjunct in Molecular Medicine at Scripps Research. [9]

He has been director of the Department of Energy Human Genome Project and Chairman of the Department of Biomedical Engineering at Boston University. [1]

He is a consultant to more than 16 biotech firms, has published more than 400 peer reviewed articles, been granted 54 US patents, and co-authored a three-volume textbook on Biophysical Chemistry. [1]

Publications

Papers

Charles Cantor obtained his Ph.D. in the group of Ignacio Tinoco, with whom he published work on the optical properties of nucleotides. [10] In post-doctoral work with Thomas Jukes he studied repetitive sequences in polypeptides, [11] but most of his independent research has concerned nucleic acids, from his early work with nuclear magnetic resonance (NMR) [12] and repetitive sequences in polydeoxyribonucleotides. [13] onwards.

Cantor’s laboratory at Boston University has developed methods for separating large DNA molecules, for studying structural relationships in complex proteins and nucleic acids, and for sensitive detection of proteins and nucleic acids in a variety of settings. His work has been very highly cited, with five papers cited more than 1000 times each: 2709 citations of work on a toggle switch in Escherichia coli, [14] 2594 of his paper on microtubule assembly, [15] 2412 on his paper on pulsed field gradient gel-electrophoresis, [16] 1437 on the launching of the ENCODE project (with about 200 authors), [17] and 1176 on a study of noise in gene expression. [18]

Reviews

Cantor's reviews include one on the physical chemistry of nucleic acids. [19]

Books

Cantor co-authored Biophysical Chemistry with Paul Schimmel, which was published in three volumes: Part 1, The Conformation of Biological Macromolecules; [3] Part 2, Techniques for the Study of Biological Structure and Function; [4] Part 3, The Behavior of Biological Macromolecules [5]

With Cassandra Smith, he wrote Genomics: The Science and Technology Behind the Human Genome Project. [20]

Related Research Articles

<span class="mw-page-title-main">Agarose gel electrophoresis</span> Method for separation and analysis of biomolecules using agarose gel

Agarose gel electrophoresis is a method of gel electrophoresis used in biochemistry, molecular biology, genetics, and clinical chemistry to separate a mixed population of macromolecules such as DNA or proteins in a matrix of agarose, one of the two main components of agar. The proteins may be separated by charge and/or size, and the DNA and RNA fragments by length. Biomolecules are separated by applying an electric field to move the charged molecules through an agarose matrix, and the biomolecules are separated by size in the agarose gel matrix.

<span class="mw-page-title-main">Denaturation (biochemistry)</span> Loss of structure in proteins and nucleic acids due to external stress

In biochemistry, denaturation is a process in which proteins or nucleic acids lose the quaternary structure, tertiary structure, and secondary structure which is present in their native state, by application of some external stress or compound such as a strong acid or base, a concentrated inorganic salt, an organic solvent, agitation and radiation or heat. If proteins in a living cell are denatured, this results in disruption of cell activity and possibly cell death. Protein denaturation is also a consequence of cell death. Denatured proteins can exhibit a wide range of characteristics, from conformational change and loss of solubility to aggregation due to the exposure of hydrophobic groups. The loss of solubility as a result of denaturation is called coagulation. Denatured proteins lose their 3D structure and therefore cannot function.

<span class="mw-page-title-main">Gel electrophoresis</span> Method for separation and analysis of biomolecules

Gel electrophoresis is a method for separation and analysis of biomacromolecules and their fragments, based on their size and charge. It is used in clinical chemistry to separate proteins by charge or size and in biochemistry and molecular biology to separate a mixed population of DNA and RNA fragments by length, to estimate the size of DNA and RNA fragments or to separate proteins by charge.

Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and physical structure of biological macromolecules is known as molecular biology.

<span class="mw-page-title-main">Nucleic acid</span> Class of large biomolecules essential to all known life

Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). If the sugar is ribose, the polymer is RNA; if the sugar is the ribose derivative deoxyribose, the polymer is DNA.

<span class="mw-page-title-main">Polyacrylamide gel electrophoresis</span>

Polyacrylamide gel electrophoresis (PAGE) is a technique widely used in biochemistry, forensic chemistry, genetics, molecular biology and biotechnology to separate biological macromolecules, usually proteins or nucleic acids, according to their electrophoretic mobility. Electrophoretic mobility is a function of the length, conformation, and charge of the molecule. Polyacrylamide gel electrophoresis is a powerful tool used to analyze RNA samples. When polyacrylamide gel is denatured after electrophoresis, it provides information on the sample composition of the RNA species.

<span class="mw-page-title-main">Leslie Orgel</span> British chemist

Leslie Eleazer Orgel FRS was a British chemist. He is known for his theories on the origin of life.

<span class="mw-page-title-main">DNA-binding protein</span> Proteins that bind with DNA, such as transcription factors, polymerases, nucleases and histones

DNA-binding proteins are proteins that have DNA-binding domains and thus have a specific or general affinity for single- or double-stranded DNA. Sequence-specific DNA-binding proteins generally interact with the major groove of B-DNA, because it exposes more functional groups that identify a base pair. However, there are some known minor groove DNA-binding ligands such as netropsin, distamycin, Hoechst 33258, pentamidine, DAPI and others.

Biomedicine is a branch of medical science that applies biological and physiological principles to clinical practice. Biomedicine stresses standardized, evidence-based treatment validated through biological research, with treatment administered via formally trained doctors, nurses, and other such licensed practitioners.

<span class="mw-page-title-main">Peptide mass fingerprinting</span>

Peptide mass fingerprinting (PMF) is an analytical technique for protein identification in which the unknown protein of interest is first cleaved into smaller peptides, whose absolute masses can be accurately measured with a mass spectrometer such as MALDI-TOF or ESI-TOF. The method was developed in 1993 by several groups independently. The peptide masses are compared to either a database containing known protein sequences or even the genome. This is achieved by using computer programs that translate the known genome of the organism into proteins, then theoretically cut the proteins into peptides, and calculate the absolute masses of the peptides from each protein. They then compare the masses of the peptides of the unknown protein to the theoretical peptide masses of each protein encoded in the genome. The results are statistically analyzed to find the best match.

<span class="mw-page-title-main">Pulsed-field gel electrophoresis</span> Lab technique for separation of DNA

Pulsed field gel electrophoresis is a technique used for the separation of large DNA molecules by applying to a gel matrix an electric field that periodically changes direction. Pulsed-field gel electrophoresis (PFGE) is a method used to separate large segments of DNA using an alternating and cross field. In a uniform magnetic field, components larger than 50kb move through the gel in a zigzag pattern, allowing for more effective separation of DNA molecules. This method is commonly used in microbiology for typing bacteria and is a valuable tool for epidemiological studies and gene mapping in microbes and mammalian cells. It also played a role in the development of large-insert cloning systems such as bacterial and yeast artificial chromosomes.

<span class="mw-page-title-main">Phoebus Levene</span> American biochemist (1869–1940)

Phoebus Aaron Theodore Levene was a Russian-born American biochemist who studied the structure and function of nucleic acids. He characterized the different forms of nucleic acid, DNA from RNA, and found that DNA contained adenine, guanine, thymine, cytosine, deoxyribose, and a phosphate group.

Nucleic acid thermodynamics is the study of how temperature affects the nucleic acid structure of double-stranded DNA (dsDNA). The melting temperature (Tm) is defined as the temperature at which half of the DNA strands are in the random coil or single-stranded (ssDNA) state. Tm depends on the length of the DNA molecule and its specific nucleotide sequence. DNA, when in a state where its two strands are dissociated, is referred to as having been denatured by the high temperature.

<span class="mw-page-title-main">EEF1B2</span> Protein-coding gene in the species Homo sapiens

Elongation factor 1-beta is a protein that in humans is encoded by the EEF1B2 gene.

Stephen Levene is an American biophysicist and professor of bioengineering, molecular biology, and physics at the University of Texas at Dallas.

Experimental approaches of determining the structure of nucleic acids, such as RNA and DNA, can be largely classified into biophysical and biochemical methods. Biophysical methods use the fundamental physical properties of molecules for structure determination, including X-ray crystallography, NMR and cryo-EM. Biochemical methods exploit the chemical properties of nucleic acids using specific reagents and conditions to assay the structure of nucleic acids. Such methods may involve chemical probing with specific reagents, or rely on native or analogue chemistry. Different experimental approaches have unique merits and are suitable for different experimental purposes.

<span class="mw-page-title-main">Biophysical chemistry</span>

Biophysical chemistry is a physical science that uses the concepts of physics and physical chemistry for the study of biological systems. The most common feature of the research in this subject is to seek explanation of the various phenomena in biological systems in terms of either the molecules that make up the system or the supra-molecular structure of these systems.

<span class="mw-page-title-main">Paul Schimmel</span> American chemist

Paul Reinhard Schimmel is an American biophysical chemist and translational medicine pioneer.

<span class="mw-page-title-main">Donald Crothers</span>

Donald Crothers was a professor of chemistry at Yale University in the United States. He was best known for his work on nucleic acid structure and function.

References

  1. 1 2 3 4 "CV of Dr. Charles Cantor - Institute of Biophysics" (PDF). Institute of Biophysics of Chinese Academy of Sciences. August 2010. Archived (PDF) from the original on 2020-05-17. Retrieved August 18, 2020.
  2. Schwartz, David C.; Cantor, Charles R. (1984). "Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis". Cell. 37 (1): 67–75. doi:10.1016/0092-8674(84)90301-5. PMID   6373014. S2CID   30743288.
  3. 1 2 Cantor, Charles R.; Schimmel, Paul R. (15 March 1980). Biophysical Chemistry: Part I: The Conformation of Biological Macromolecules. ISBN   978-0716711889.
  4. 1 2 Cantor, Charles R.; Schimmel, Paul R. (15 April 1980). Biophysical Chemistry: Part II: Techniques for the Study of Biological Structure and Function. ISBN   978-0716711902.
  5. 1 2 Cantor, Charles R.; Schimmel, Paul R. (15 June 1980). Biophysical Chemistry: Part III: The Behavior of Biological Macromolecules. ISBN   978-0716711926.
  6. "Charles Cantor".
  7. "Heavy hydrogen keeps yeast looking good".
  8. "Retrotope". Archived from the original on 2011-07-15. Retrieved 2011-02-01.
  9. 1 2 3 4 "Cantor, Charles" . Retrieved 26 April 2021.
  10. Cantor, Charles R.; Tinoco, Ignacio (1965). "Absorption and Optical Rotatory Dispersion of Seven Trinucleoside Diphosphates". Journal of Molecular Biology. 13 (1): 65–77. doi:10.1016/S0022-2836(65)80080-8. PMID   5859044.
  11. Cantor, C. R.; Jukes, T. H. (1966). "The repetition of homologous sequences in the polypeptide chains of certain cytochromes and globins". Proceedings of the National Academy of Sciences. 56 (1): 177–184. Bibcode:1966PNAS...56..177C. doi: 10.1073/pnas.56.1.177 . PMC   285692 . PMID   5229846.
  12. Newmark, R. A.; Cantor, Charles R. (1968). "Nuclear magnetic resonance study of the interactions of guanosine and cytidine in dimethyl sulfoxide". Journal of the American Chemical Society. 90 (18): 5010–5017. doi:10.1021/ja01020a041. PMID   5665545.
  13. Wells, R.D.; Larson, J.E.; Grant, R.C.; Shortle, B.E.; Cantor, C.R. (1970). "Physicochemical studies on polydeoxyribonucleotides containing defined repeating nucleotide sequences". Journal of Molecular Biology. 54 (3): 465–497. doi:10.1016/0022-2836(70)90121-X. PMID   5492018.
  14. Gardner, Timothy S.; Cantor, Charles R.; Collins, James J. (2000). "Construction of a genetic toggle switch in Escherichia coli". Nature. 403 (6767): 339–342. Bibcode:2000Natur.403..339G. doi:10.1038/35002131. PMID   10659857. S2CID   345059.
  15. Shelanski, M. L.; Gaskin, F.; Cantor, C. R. (1973). "Microtubule Assembly in the Absence of Added Nucleotides". Proceedings of the National Academy of Sciences. 70 (3): 765–768. Bibcode:1973PNAS...70..765S. doi: 10.1073/pnas.70.3.765 . PMC   433354 . PMID   4514990.
  16. Schwartz, D C; Cantor, C R (1984). "Separation of yeast chromosome-sized DNAs by pulsed field gradient gel-electrophoresis". Cell. 37 (1): 67–75. doi:10.1016/0092-8674(84)90301-5. PMID   6373014. S2CID   30743288.
  17. ENCODE Project Consortium (2004). "The ENCODE (ENCyclopedia of DNA Elements) Project". Science. 306 (5696): 636–640. Bibcode:2004Sci...306..636E. doi:10.1126/science.1105136. PMID   15499007. S2CID   22837649.
  18. Blake, William J.; Kærn, Mads; Cantor, Charles R.; Collins, J. J. (2003). "Noise in eukaryotic gene expression". Nature. 422 (6932): 633–637. Bibcode:2003Natur.422..633B. doi:10.1038/nature01546. PMID   12687005. S2CID   4347106.
  19. Cantor, C. R.; Katz, L. (1971). "Nucleic Acids". Annual Review of Physical Chemistry. 22: 25–46. Bibcode:1971ARPC...22...25C. doi:10.1146/annurev.pc.22.100171.000325.
  20. Cantor, Charles R.; Cantor, Cassandra L. (1999). Genomics: The Science and Technology Behind the Human Genome Project. New York: Wiley-Interscience. ISBN   978-0471599081.