Paul Schimmel

Last updated

Paul Schimmel
Schimmel-8783.jpg
Born (1940-08-04) August 4, 1940 (age 82) [1]
Hartford, Connecticut
NationalityAmerican
Alma mater Ohio Wesleyan University (B.A.)
Massachusetts Institute of Technology (Ph.D.)
Awards Pfizer Award in Enzyme Chemistry (1978)
Emily M. Gray Award for Significant Contributions to Education in Biophysics
Stein and Moore Award of the Protein Society
Kathryn C. Hach Award for Entrepreneurial Success
Scientific career
Fields Biochemistry/Molecular Medicine
Doctoral students Maria Jasin, Lynne Regan

Paul Reinhard Schimmel (born August 4, 1940) is an American biophysical chemist and translational medicine pioneer.

Contents

Career

Paul Schimmel is a Professor of Molecular Medicine [2] at The Scripps Research Institute. Prior to joining The Scripps Research Institute, he was a John D. and Catherine T. MacArthur Professor of Biochemistry and Biophysics at MIT (Massachusetts Institute of Technology). Author or coauthor of many scientific research publications, [3] he is also coauthor of a widely used 3-volume textbook on biophysical chemistry. [4] His research interests have focused on aminoacyl tRNA synthetases as fundamental interpreters of the genetic information. [5] Through career-long investigations of this ancient and universal set of essential enzymes, his laboratory has worked on a universal mechanism for correcting errors in the interpretation of genetic information, [6] [7] and went on to show how this mechanism is essential for maintaining cellular homeostasis and for preventing serious pathologies and disease. [8] [9] He has also been listed as one of the leading translational researchers in the world, having one of the top five most cited patents for the period 2012-2016. [10]

His laboratory also discovered what others have referred to as a tRNA synthetase-directed primordial, or 'second', genetic code that eventually was incorporated into the modern code. [11] [12] [13] In a separate line of research published back in 1983, Schimmel developed the concept of what are now known as ESTs (expressed sequence tags) and the strategy of shotgun sequencing, approaches that several years later were adopted for the human genome project. [14] Nature magazine listed Schimmel's work on the development of ESTs as one of the four key developments that launched the human genome project. [15] Lastly, his laboratory established connections of synthetases to disease and, most recently, they reported the structural and functional metamorphosis of these proteins, whereby they are repurposed with novel activities, both inside and outside the cell, in a variety of cell signaling pathways [16] [17] [18]

Honors

Named to various society and university awards and honorary degrees, and elected to membership in the American Academy of Arts and Sciences, [19] the National Academy of Sciences, [20] the American Philosophical Society, [21] the Institute of Medicine (National Academy of Medicine) [22] and National Academy of Inventors. [23] Active in many scientific and academic organizations and committees, including past service as President of the Division of Biological Chemistry of the American Chemical Society (presently with over 7,000 members) and as an editorial board member of numerous scientific journals. In June 2020, he was named the 2020 winner of the Kathryn C. Hach Award for Entrepreneurial Success for "co-founding more than ten biotech companies and aiding others in their endeavors for nearly three decades." [24] Named the ARCS San Diego Chapter 2020 Scientist of the Year [25]

Related Research Articles

<span class="mw-page-title-main">Aminoacyl tRNA synthetase</span> Class of enzymes

An aminoacyl-tRNA synthetase, also called tRNA-ligase, is an enzyme that attaches the appropriate amino acid onto its corresponding tRNA. It does so by catalyzing the transesterification of a specific cognate amino acid or its precursor to one of all its compatible cognate tRNAs to form an aminoacyl-tRNA. In humans, the 20 different types of aa-tRNA are made by the 20 different aminoacyl-tRNA synthetases, one for each amino acid of the genetic code.

Peter G. Schultz is an American chemist. He is the CEO and Professor of Chemistry at The Scripps Research Institute, the founder and former director of GNF, and the founding director of the California Institute for Biomedical Research (Calibr), established in 2012. In August 2014, Nature Biotechnology ranked Schultz the #1 top translational researcher in 2013.

<span class="mw-page-title-main">Aminoacyl-tRNA</span>

Aminoacyl-tRNA is tRNA to which its cognate amino acid is chemically bonded (charged). The aa-tRNA, along with particular elongation factors, deliver the amino acid to the ribosome for incorporation into the polypeptide chain that is being produced during translation.

Alexander Rich was an American biologist and biophysicist. He was the William Thompson Sedgwick Professor of Biophysics at MIT and Harvard Medical School. Rich earned an A.B. and an M.D. from Harvard University. He was a post-doc of Linus Pauling along with James Watson. During this time he was a member of the RNA Tie Club, a social and discussion group which attacked the question of how DNA encodes proteins. He had over 600 publications to his name.

Charles R. Cantor is an American molecular geneticist who, in conjunction with David Schwartz, developed pulse field gel electrophoresis for very large DNA molecules. Cantor's three-volume book, Biophysical Chemistry co-authored with Paul Schimmel, was an influential textbook in the 1980s and 1990s.

<span class="mw-page-title-main">EEF1D</span> Protein-coding gene in the species Homo sapiens

Elongation factor 1-delta is a protein that in humans is encoded by the EEF1D gene.

<span class="mw-page-title-main">Glycine—tRNA ligase</span> Protein-coding gene in the species Homo sapiens

Glycine—tRNA ligase also known as glycyl–tRNA synthetase is an enzyme that in humans is encoded by the GARS1 gene.

<span class="mw-page-title-main">WARS (gene)</span> Protein-coding gene in the species Homo sapiens

Tryptophanyl-tRNA synthetase, cytoplasmic is an aminoacyl-tRNA synthetase enzyme that attaches the amino acid tryptophan to its cognate tRNA. In humans, it is encoded by the WARS gene.

<span class="mw-page-title-main">EEF1B2</span> Protein-coding gene in the species Homo sapiens

Elongation factor 1-beta is a protein that in humans is encoded by the EEF1B2 gene.

<span class="mw-page-title-main">YARS</span> Protein-coding gene in humans

Tyrosyl-tRNA synthetase, cytoplasmic, also known as Tyrosine-tRNA ligase, is an enzyme that in humans is encoded by the YARS gene.

<span class="mw-page-title-main">Leucyl-tRNA synthetase</span> Protein-coding gene in the species Homo sapiens

Leucyl-tRNA synthetase, cytoplasmic is an enzyme that in humans is encoded by the LARS gene.

<span class="mw-page-title-main">Expanded genetic code</span> Modified genetic code

An expanded genetic code is an artificially modified genetic code in which one or more specific codons have been re-allocated to encode an amino acid that is not among the 22 common naturally-encoded proteinogenic amino acids.

Amino acid activation refers to the attachment of an amino acid to its respective transfer RNA (tRNA). The reaction occurs in the cell cytosol and consists of two steps: first, the enzyme aminoacyl tRNA synthetase catalyzes the binding of adenosine triphosphate (ATP) to a corresponding amino acid, forming a reactive aminoacyl adenylate intermediate and releasing inorganic pyrophosphate (PPi). Subsequently, aminoacyl tRNA synthetase binds the AMP-amino acid to a tRNA molecule, releasing AMP and attaching the amino acid to the tRNA. The resulting aminoacyl-tRNA is said to be charged.

Susan L. Ackerman is an American neuroscientist and geneticist. Her work has highlighted some of the genetic and biochemical factors that are involved in the development of the central nervous system and age-related neurodegeneration. Her research is aimed at helping scientists understand what causes several types of neurodegeneration in mammals. This research, and others' like it, may lead to cures for neurodegenerative diseases. Ackerman is a professor at University of California San Diego. She was formerly a professor at the Jackson Laboratory and the Sackler School of Graduate Biomedical Sciences at Tufts University. She also serves as an adjunct professor at the University of Maine, Orono. Ackerman was an associate geneticist at Massachusetts General Hospital in Boston, Massachusetts.

<span class="mw-page-title-main">Nenad Ban</span> Croatian biochemist

Nenad Ban is a biochemist born in Zagreb, Croatia who currently works at the ETH Zurich, Swiss Federal Institute of Technology, as a professor of Structural Molecular Biology. He is a pioneer in studying gene expression mechanisms and the participating protein synthesis machinery.

Susan A. Martinis is an American biochemist. She has co-authored over 57 publications in peer reviewed journals and scientific book chapters. Her expertise is in protein:RNA interactions and aminoacyl tRNA synthetases. As of 2019, she is the Vice Chancellor for Research and Innovation at the University of Illinois at Urbana-Champaign.

Karin Musier-Forsyth, an American biochemist, is an Ohio Eminent Scholar on the faculty of the Department of Chemistry & Biochemistry at Ohio State University. Musier-Forsyth's research involves biochemical, biophysical and cell-based approaches to understand the interactions of proteins and RNAs involved in protein synthesis and viral replication, especially in HIV.

Xiang-Lei Yang (杨湘磊) is a Chinese-born American molecular biologist. She is a professor at The Scripps Research Institute, located in La Jolla, California. Her work has contributed to the establishment of physiological importance of aminoacyl-tRNA synthetases beyond their classical role in supporting mRNA translation and their disordered processes that contribute to disease. She founded the Translation Machinery in Health and Disease Gordon Research Conference, an ongoing biannual international conference since 2015. She helped co-found aTyr Pharma, a Nasdaq-listed biotechnology company.

Zhiping Weng is the Li Weibo Professor of biomedical research and chair of the program in integrative biology and bioinformatics at the University of Massachusetts Medical School. She was awarded Fellowship of the International Society for Computational Biology (ISCB) in 2020 for outstanding contributions to computational biology and bioinformatics.

William H. McClain is an American molecular biologist and academic. He is currently Halvorson Professor of Bacteriology and Molecular Biology, Emeritus, at the University of Wisconsin-Madison. McClain is a Fellow of the American Academy of Arts and Sciences, and, formerly, a Jane Coffin Childs Memorial Fund for Medical Research Fellow. He was a Board Member of the American Academy of Arts and Sciences, Midwest Center. McClain is a pioneer in the biological sciences known for the dissection of RNA-protein recognition primarily through genetic and biochemical means in bacteria.

References

  1. Who's who in the West: A Biographical Dictionary of Noteworthy Men and Women of the Pacific Coast and the Western States. A.N. Marquis Company. 2001. ISBN   9780837909325 . Retrieved March 24, 2015.
  2. "TSRI Faculty Page".
  3. "Complete List of Published Work in MyBibliography".
  4. Cantor, Charles R.; Schimmel, Paul R. "Biophysical Chemistry Part I: The Conformation of Biological Macromolecules, Biophysical Chemistry Part II: Techniques for the Study of Biological Structure and Function, Biophysical Chemistry Part III: The Behavior of Biological Macromolecules". Macmillan Learning.
  5. "Schimmel Lab Website".
  6. Schmidt, E.; Schimmel, P. (April 8, 1994). "Mutational isolation of a sieve for editing in a transfer RNA synthetase". Science. 264 (5156): 265–267. doi:10.1126/science.8146659. ISSN   0036-8075. PMID   8146659.
  7. Song, Youngzee; Zhou, Huihao; Vo, My-Nuong; Shi, Yi; Nawaz, Mir Hussain; Vargas-Rodriguez, Oscar; Diedrich, Jolene K.; Yates, John R.; Kishi, Shuji (December 22, 2017). "Double mimicry evades tRNA synthetase editing by toxic vegetable-sourced non-proteinogenic amino acid". Nature Communications. 8 (1): 2281. doi:10.1038/s41467-017-02201-z. PMC   5741666 . PMID   29273753.
  8. Lee, Jeong Woong; Beebe, Kirk; Nangle, Leslie A.; Jang, Jaeseon; Longo-Guess, Chantal M.; Cook, Susan A.; Davisson, Muriel T.; Sundberg, John P.; Schimmel, Paul (September 7, 2006). "Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration". Nature. 443 (7107): 50–55. doi:10.1038/nature05096. ISSN   1476-4687. PMID   16906134. S2CID   4395135.
  9. Liu, Ye; Satz, Jakob S.; Vo, My-Nuong; Nangle, Leslie A.; Schimmel, Paul; Ackerman, Susan L. (December 9, 2014). "Deficiencies in tRNA synthetase editing activity cause cardioproteinopathy". Proceedings of the National Academy of Sciences of the United States of America. 111 (49): 17570–17575. doi: 10.1073/pnas.1420196111 . PMC   4267364 . PMID   25422440.
  10. Huggett, Brady; Paisner, Kathryn (December 1, 2017). "Top 20 translational researchers of 2016". Nature Biotechnology. 35 (12): 1126. doi:10.1038/nbt.4028. ISSN   1546-1696. PMID   29220038. S2CID   205285596.
  11. Francklyn, C.; Schimmel, P. (February 2, 1989). "Aminoacylation of RNA minihelices with alanine". Nature. 337 (6206): 478–481. doi:10.1038/337478a0. ISSN   0028-0836. PMID   2915692. S2CID   4268171.
  12. Francklyn, C.; Shi, J. P.; Schimmel, P. (February 28, 1992). "Overlapping nucleotide determinants for specific aminoacylation of RNA microhelices". Science. 255 (5048): 1121–1125. doi:10.1126/science.1546312. ISSN   0036-8075. PMID   1546312.
  13. Schimmel, Paul (January 2018). "The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis". Nature Reviews. Molecular Cell Biology. 19 (1): 45–58. doi:10.1038/nrm.2017.77. ISSN   1471-0080. PMID   28875994. S2CID   5231605.
  14. Putney, S. D.; Herlihy, W. C.; Schimmel, P. (April 21, 1983). "A new troponin T and cDNA clones for 13 different muscle proteins, found by shotgun sequencing". Nature. 302 (5910): 718–721. doi:10.1038/302718a0. ISSN   0028-0836. PMID   6687628. S2CID   4364361.
  15. Lander, E. S.; Linton, L. M.; Birren, B.; Nusbaum, C.; Zody, M. C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M. (February 15, 2001). "Initial sequencing and analysis of the human genome" (PDF). Nature. 409 (6822): 860–921. doi: 10.1038/35057062 . ISSN   0028-0836. PMID   11237011.
  16. Guo, Min; Schimmel, Paul (March 2013). "Essential nontranslational functions of tRNA synthetases". Nature Chemical Biology. 9 (3): 145–153. doi:10.1038/nchembio.1158. PMC   3773598 . PMID   23416400.
  17. Sajish, Mathew; Schimmel, Paul (March 19, 2015). "A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol". Nature. 519 (7543): 370–373. doi:10.1038/nature14028. PMC   4368482 . PMID   25533949.
  18. Lo, Wing-Sze; Gardiner, Elisabeth; Xu, Zhiwen; Lau, Ching-Fun; Wang, Feng; Zhou, Jie J.; Mendlein, John D.; Nangle, Leslie A.; Chiang, Kyle P. (July 18, 2014). "Human tRNA synthetase catalytic nulls with diverse functions". Science. 345 (6194): 328–332. doi:10.1126/science.1252943. PMC   4188629 . PMID   25035493.
  19. "American Academy of Arts and Sciences".
  20. "National Academy of Sciences".
  21. "American Philosophical Society".
  22. "National Academy of Medicine".
  23. "National Academy of Inventors".
  24. "2020 National Award Recipients Citations". American Chemical Society. Retrieved June 13, 2020.
  25. "ARCS 2020 Scientist of the Year | San Diego". san-diego.arcsfoundation.org. Retrieved April 17, 2021.{{cite web}}: CS1 maint: url-status (link)